Performance comparison of different regression methods for vo(2)max estimation

dc.authoridAkay, Mehmet Fatih -- 0000-0003-0780-0679
dc.contributor.authorAkturk, Erman
dc.contributor.authorAkay, M. Fatih
dc.contributor.authorKilitcioglu, Hasan
dc.date.accessioned12.07.201910:50:10
dc.date.accessioned2019-07-12T15:28:03Z
dc.date.available12.07.201910:50:10
dc.date.available2019-07-12T15:28:03Z
dc.date.issued2013
dc.departmentFen Edebiyat Fakültesien_US
dc.description21st Signal Processing and Communications Applications Conference (SIU) -- APR 24-26, 2013 -- CYPRUSen_US
dc.descriptionWOS: 000325005300440en_US
dc.description.abstractThe purpose of this paper is to develop maximal oxygen uptake (VO(2)max) models by using different regression methods such as Multilayer Feed-Forward Artificial Neural Networks (MFANN's), Support Vector Regression (SVR), Generalized Regression Neural Networks (GRNN's) and Multiple Linear Regression (MLR). The dataset includes data of 439 subjects and the input variables of the dataset are gender, age, body mass index (BMI), percent body fat (BF), respiratory exchange ratio (RER) from treadmill test, self-reported rating of perceived exertion (RPE) from treadmill test, heart rate (HR) and time to exhaustion from treadmill test. The performance of the models is evaluated by calculating their standard error of estimates (SEE) and multiple correlation coefficients (R). The results suggest that MFANN-based VO(2)max prediction models perform better than other prediction models.en_US
dc.identifier.isbn978-1-4673-5563-6; 978-1-4673-5562-9
dc.identifier.issn2165-0608
dc.identifier.urihttps://hdl.handle.net/20.500.12507/605
dc.language.isotr
dc.publisherIEEEen_US
dc.relation.ispartof2013 21st sıgnal processıng and communıcatıons applıcatıons conference (sıu)
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectSupport Vector Regressionen_US
dc.subjectMaximal Oxygen Uptakeen_US
dc.titlePerformance comparison of different regression methods for vo(2)max estimation
dc.typeConference Object

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Hasan KİLİTÇİOĞLU.pdf
Boyut:
315.79 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text