Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Demirdelen, Ozge" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Analysis of Carbon Footprint Including Process-Level Calculation and Its Influencing Factors of Process for Low-Carbon and Sustainable Textile Industry
    (MDPI, 2024) Alici, Hakan; Yigit, Beyza Nur; Menemencioglu, Betul; Ates, Kuebra Tumay; Demirdelen, Ozge; Demirdelen, Tugce; Kivanc, Ziya
    Climate change stands out as a significant environmental issue on a global scale, with greenhouse gases being one of its primary drivers. The greenhouse gas process provides a critical framework for understanding the sources, emissions, and environmental impacts of these gases. This article presents an overview of the fundamental elements of the greenhouse gas process in the textile sector and discusses how it should be managed in line with sustainability goals. Carbon dioxide (CO2), methane (CH4), nitrous oxides (N2O), and fluorinated gases are the most common greenhouse gases, each derived from different sources. The textile sector is particularly associated with high greenhouse gas emissions, especially in areas such as energy consumption, water usage, and waste management. Therefore, measurements taken in factories are crucial for identifying emission sources and developing reduction strategies. This article examines in detail the greenhouse gas emissions resulting from various activities at K & imath;van & ccedil; Textile. Energy consumption, particularly the emissions resulting from the fuels used in electricity and heating processes, is evaluated. Additionally, emissions from other important sources such as refrigerant gas leaks, waste management, and transportation are analyzed. The measurement process was carried out in accordance with national and international standards. The greenhouse gas inventory includes data on energy consumption, fuel consumption, refrigerant gas usage, transportation, production process management, and waste management throughout the factory. Based on these data, the total amount and sources of emissions were determined. This study presents a systematic method for calculating a company's carbon footprint, with data collected in accordance with national and international standards. Such data can provide a reference point for other companies when making similar calculations. All of the businesses of the facility where the study was conducted were examined and calculations were made on a total of 1350 employees. As a result of the detailed study, K & imath;van & ccedil; Textile's corporate carbon footprint for 2023 was calculated as a total of 68,746.86 tons CO2e. According to this data obtained, K & imath;van & ccedil; Textile emitted 50.92 tons of CO2e greenhouse gases per employee. At the same time, it was determined that the production in 2023 was 4,427,082 tons and a greenhouse gas emission of 15.53 tons of CO2e per production (ton) was calculated. This study also includes proposed strategies for reducing emissions. These strategies include energy efficiency measures, the use of renewable energy sources, waste reduction, and the adoption of efficient production processes. In conclusion, this article emphasizes the importance of efforts to measure and reduce greenhouse gas emissions in textile factories. K & imath;van & ccedil; Textile's greenhouse gas measurements provide a fundamental reference for achieving sustainability goals in the sector. The data obtained will support the factory's efforts to reduce its carbon footprint and minimize its environmental impacts.
  • [ X ]
    Öğe
    Assessing the Carbon Footprint of Plastic Bottle Blow Mold Based on Product Life Cycle for Managing the Mold Industry's Carbon Emission
    (MDPI, 2024) Yavuzdeger, Abdurrahman; Esenboga, Burak; Tumay Ates, Kuebra; Demirdelen, Ozge; Yuksel, Mehmet
    Calculating the carbon footprint (CF) holds paramount importance in today's world as it provides a tangible measure of our impact on the environment. In the corporate realm, businesses armed with CF data can optimize operations, reduce waste, and adopt greener technologies, leading to both environmental and economic benefits. In this study, carbon emissions-a significant global issue-are investigated through the lens of the ISO 14067-ISO Product Based Carbon Footprint (CF) standard, focusing on the operations of a mold company. The primary innovation lies in meticulously tracing every stage of plastic bottle blow mold production, the most prevalent product in the mold industry, from its raw material input to its final form as a mold in the factory. Subsequently, detailed calculations and analysis are conducted to quantify the carbon footprint associated with this process and its impact on the environment. The calculated CF for one ton of PBBM produced by Petka Mold Industry is presented. This study fills a critical gap in the literature by providing a holistic understanding of the carbon footprint of plastic bottle blow mold (PBBM) production, thereby offering valuable insights for managing carbon emissions and promoting sustainability within the mold industry. By integrating a life cycle product carbon footprint thinking into industrial practices, a greener, more sustainable future can be paved, mitigating the ecological footprint of the PBBM.
  • [ X ]
    Öğe
    Carbon Emission Analysis and Reporting in Urban Emissions: An Analysis of the Greenhouse Gas Inventories and Climate Action Plans in Sarıçam Municipality
    (MDPI, 2024) Davutluoglu, Orkun; Yavuzdeger, Abdurrahman; Esenboga, Burak; Demirdelen, Ozge; Ates, Kuebra Tuemay; Demirdelen, Tugce
    The urban carbon footprint (UCF) is an important tool for assessing an organization's ecological impacts and in guiding sustainability efforts. This calculation is usually measured in tons of carbon dioxide equivalent (CO2-eq). Calculations provide important data to determine strategies to reduce the carbon footprint and establish sustainability targets. Various standards and protocols guide UCF calculation, and many organizations aim to make these data transparent to their stakeholders and the public. This study aims to calculate the UCF of Sar & imath;& ccedil;am Municipality (SM) in the Adana Province of T & uuml;rkiye. This study includes the greenhouse gas emission inventories resulting from all activities of the SM main service building, guest house, construction site service building, Cultural Center service building, and additional service buildings between 1 January 2022 and 31 December 2022. The calculations include generator fuel consumption, electricity consumption, the refrigerant gas leaks and refills resulting from these activities, the fuel consumed in vehicles owned by the company or whose fuel consumption is under company control, emissions originating from personal travel, emissions originating from customers and visitors, emissions originating from business travel, purchases, etc. Emissions from products purchased and emissions from waste transportation are included. The findings show that, in 2022, the total UCF of SM was equal to 10,862.46 tons of CO2-eq. The Paris Agreement aims to reduce the per capita emissions to approximately two tons of CO2-eq by 2030. The carbon footprint per employee within the municipality was calculated at 12.43 tons of CO2-eq, as derived from the analyzed data. The results reveal the importance of implementing sustainable practices and strategies within SM, such as energy efficiency measures, waste reduction, and the adoption of renewable energy sources, to mitigate its carbon footprint. This study plans to provide a basis for SM's reduction efforts by keeping greenhouse gas emissions under control.

| Çağ Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kütüphane ve Dokümantasyon Daire Başkanlığı, Mersin, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim