Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAktürk, Erman
dc.contributor.authorAkay, Mehmet Fatih
dc.contributor.authorKilitçioğlu, Hasan
dc.date.accessioned12.07.201910:50:10
dc.date.accessioned2019-07-12T15:25:46Z
dc.date.available12.07.201910:50:10
dc.date.available2019-07-12T15:25:46Z
dc.date.issued2013
dc.identifier.isbn978-1-4673-5563-6
dc.identifier.urihttps://doi.org/10.1109/SIU.2013.6531600
dc.identifier.urihttps://hdl.handle.net/20.500.12507/430
dc.description2013 21st Signal Processing and Communications Applications Conference, SIU 2013 -- 24 April 2013 through 26 April 2013 -- Haspolaten_US
dc.description.abstractThe purpose of this paper is to develop maximal oxygen uptake (VO 2max) models by using different regression methods such as Multilayer Feed-Forward Artificial Neural Networks (MFANN's), Support Vector Regression (SVR), Generalized Regression Neural Networks (GRNN's) and Multiple Linear Regression (MLR). The dataset includes data of 439 subjects and the input variables of the dataset are gender, age, body mass index (BMI), percent body fat (BF), respiratory exchange ratio (RER) from treadmill test, self-reported rating of perceived exertion (RPE) from treadmill test, heart rate (HR) and time to exhaustion from treadmill test. The performance of the models is evaluated by calculating their standard error of estimates (SEE) and multiple correlation coefficients (R). The results suggest that MFANN-based VO2max prediction models perform better than other prediction models.en_US
dc.language.isoturen_US
dc.relation.isversionof10.1109/SIU.2013.6531600en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectMaximal Oxygen Uptakeen_US
dc.subjectSupport Vector Regressionen_US
dc.titlePerformance comparison of different regression methods for VO2max ESTIMATION [VO2max tahmini için farkli regresyon yöntemlerinin performans Karsilastirmas]en_US
dc.typeconferenceObjecten_US
dc.relation.journal2013 21st Signal Processing and Communications Applications Conference, SIU 2013en_US
dc.contributor.departmentFen Edebiyat Fakültesien_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84880856475


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster