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Within this article, we report the characterization and organic vapor sensing properties of
Langmuir–Blodgett (LB) thin films of calix[8]arenes. Surface pressure–area isotherms show that very
stable monolayers are formed at the air–water interface. The LB film could be deposited onto different
substrates which allowed the films to be characterized by UV, quartz crystal microbalance (QCM), surface
plasmon resonance (SPR) and atomic force microscopy (AFM). The results indicate that good quality, uni-
form LB films can be prepared with transfer ratios of over 0.95. QCM results showed that the deposited
angmuir–Blodgett thin film
rganic vapor sensors
alixarene
urface plasmon resonance

mass of calix[8]arene monolayer onto a quartz crystal decreased from 693 to 204 ng as the number of
layers is increased. AFM studies showed a smooth, and void free surface morphology with a rms value
of 1.202 nm. The sensing abilities of this LB film towards the development of room temperature organic
vapor sensing devices are also studied. Responses of the LB films to various vapors are fast, large, and
reversible. It was found that the obtained LB film is significantly more sensitive to chloroform than other
vapors. It can be concluded that this molecule could have a potential application in the research area of

sensi
room temperature vapor

. Introduction

Volatile organic compounds (VOCs) are organic chemical com-
ounds which have a significant vapor pressure under ambient
onditions. When released into the environment, they can con-
ribute to global warming and also lead to soil, groundwater and
ir pollution within the environment [1]. VOCs are widely used
n home or office environments for example within laser printers,
leaning solvents, paints, wood preservatives, carpet backing, plas-
ics, and cosmetics. Other natural sources include trees and other
lant and animal species as well as from synthetic sources such as
etroleum derivatives. These vapors have been shown to contribute
o several illnesses such as sick building syndrome [2], allergic sen-
itization [3], immune effects in infants or children or asthmatic
ymptoms [4], probably because concentrations of VOCs in indoor

ir are generally much greater than in outdoor air. Aromatic VOCs
re suspected carcinogens and can potentially lead to leukemia
nd lymphoma upon prolonged exposure [5]. Therefore the detec-
ion of VOCs is an important issue to protect our health, wellbeing

∗ Corresponding author. Tel.: +90 266 612 10 00; fax: +90 266 612 12 15.
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and environment. In recent years, a significant interest in chemical
sensing applications of organic materials such as carbon nanotubes
[6] porphyrins [7], phthalocyanines [8] and indane [9] has been
studied in order to fabricate a highly sensitive, easy to use, cheap,
selective and a long life VOCs sensor. When these types of organic
materials interact with VOCs, their physical, chemical or structural
properties were invariably found to change, either reversibly or
irreversibly, i.e., color, mass, conductivity, film thickness, refractive
index changes etc.

A large area of research in the sensor application area utilizes
calixarenes and their derivatives due to their multiplicity of options
for targeted structural design [10–15]. The general shape of cal-
ixarenes is that of a cup with a defined upper and lower rim and a
central annulus, enabling calixarenes to act as host molecules as a
consequence of their preformed cavities. It is easy to modify either
the upper and/or lower rims to prepare various derivatives with
differing selectivities for various guest ions and small molecules
[16–19]. Cage compounds such as tert-butyl-calix[n]arenes often

show highly pre-organized structures with highly symmetrical cav-
ities suitable for host–guest interactions. The resultant chemical or
physical changes can be detected using a very sensitive capacitive
method for the detection of solvent vapors down to a concentra-
tion of a few ppm [20]. They are also capable of binding certain

dx.doi.org/10.1016/j.snb.2010.05.066
http://www.sciencedirect.com/science/journal/09254005
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Fig. 1. The chemical form

ons or small molecules within their cavities and for exhibiting high
orosity to other species. Calix[n]arenes and their derivatives are an
xcellent material to organize as a monolayer on the water surface
nd to prepare Langmuir–Blodgett (LB) thin films [21,22]. These
lms have possible applications especially in the field of the envi-
onment protection such as detection of NO2 [23], ozone [24], NH3
r HCl gases [25], various ions [26] and various solvent vapors [20].

Calix[4]resorcinarenes have been previously incorporated into
B films and exposed to a wide range of vapors (e.g. amines, alco-
ols, and thiols) to study the interaction mechanism between calix
nd vapors. It is observed that these types of LB films are capable of
inding selectively to lysine, an important amino acid [27]. Other
alixarenes were deposited as thin films onto Au-coated substrates
y the spin coating method. SPR measurements on these systems
ere utilized for the detection of benzene, toluene, ethylbenzene

nd m-xylene. Selective, fast and reversible adsorption of the vapor
olecules was detected via the resultant increase in film thickness

nd refractive index of the spun films. The adsorption behavior of
alixarenes may be explained by the capture of guest molecules in
he film matrix due to the cavitand nature of the film’s molecules
28].

In the present article, a calixarene containing eight phenolic
roups within the macrocycle substituted with –O(CH2)3COOH
ide groups was selected to form LB films. Within this work we
tudy the characterization of deposition via the LB method and uti-
ize the resultant films as a sensing layer onto gold-coated glass.
he SPR method is used to investigate the sensing properties of
alix[8]arene LB films towards organic vapors such as chloroform,
oluene, benzene and ethyl alcohol.

. Experimental details

The chemical structure of the calix[8]arene-octa-acid is shown
n Fig. 1. The calix[8]acid could be dissolved in chloroform to give

concentration of 0.25 mg ml−1. Isotherm data was measured at
oom temperature using a NIMA 622 type alternate layer LB trough
ith a Lauda Ecoline RE 204 model temperature control unit. Mono-

ayers at a surface pressure value of 22.5 mN m−1 were sequentially
ransferred by the vertical dipping method onto glass substrates for
V–visible and AFM measurement, onto 50-nm thick gold-coated
lass substrates for SPR measurement and onto quartz substrates
or QCM measurement.

The UV–visible spectra of LB film were recorded in the ultravi-
let and visible spectral region from 250 to 850 nm using an Ocean
ptics UV–visible light source (DH-2000-BAL Deuterium Tungsten
ight source) and spectrometer (USB4000) in absorbance mode.
alix[8]acid solutions in chloroform were measured in quartz
uvettes. After the deposition of LB film multilayer onto glass sub-
trates, UV–vis spectra were recorded as a function of number of
ayers.
f calix[8]acid molecule.

For QCM studies, calix[8]acid layers were deposited onto a thinly
cut wafer of raw quartz sandwiched between two gold electrodes in
an overlapping keyhole design. After each deposition cycle, the LB
film sample was dried and the mass change was monitored using a
home-made computer controlled QCM measurement system. Ded-
icated software allows the on-line recording of the changes of
the quartz resonance frequency. All measurements were taken at
room temperature using an in-house designed oscillating circuit
and standard quartz crystals with a nominal resonance frequency
of 9 MHz. The quartz crystal was inserted into the electronic control
unit and the frequency of oscillation was monitored as a function
of time using a computer. Values of frequency changes, which indi-
cate the degree of response, are measured with an accuracy of 1 Hz
when the organic vapor is present.

Atomic force microscopy analysis was performed using a Que-
sant 350 Scanning Probe Microscope. The scale is set in such a way
that light colors correspond to higher structures. The images were
taken using a standard silicon nitride tip (constant force 12 N/m) in
the contact mode.

Surface Plasmon Resonance Spectrometer (BIOSUPLAR 6 Model)
with a low power laser diode (630–670 nm) light source was
employed to perform SPR measurements with an angular resolu-
tion of 0.003◦. A glass prism (n = 1.62) is mounted within a holder
so as to be available for measurement in liquid or in air environ-
ments. Glass slides with the dimensions 20 mm × 20 mm × 1 mm
are coated on top by a very thin homogeneous layer of gold. A
transparent plastic flow cell was made in house to be allow vapor
measurements. The cell has two channels, with inlets and outlets
connected to silicone tubes. Biosuplar-Software is used to control
the SPR system settings, measurements and data acquisition as
well as data presentation. Several modes such as single measure-
ments, tracking mode or slope mode can be utilized and the signal
displayed as a function of time. Variations within both measure-
ment channels can be displayed in real time using this software.
The photodetector response was monitored as a function of time
during periodic exposure of the sample to the organic vapor for
at least 2 min, this was then allowed to recover after injection of
dry air. WINSPALL software developed at the Max-Plank-Institute
for Polymer Research, Germany was utilized for the fitting of SPR
curves to determine thickness and refractive index values of the LB
films.

3. Result and discussion

3.1. Isotherm graph
Isotherm graphs of the calix[8]acid monolayers (Fig. 2) were
obtained at the air–water interface by recording surface pressure
as a function of surface area. These measurements were repeated
several times using identical and differing volumes of the solution
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Fig. 2. Isotherm graph of calix[8]acid material.

nd the results demonstrated good stability and reproducibility of
he monolayers at the air–water interface.

Isotherms of calixarene compounds have been extensively stud-
ed using different materials such as calix[8]arenes [29–31] and
alix[4]resorcinarenes [32,27]. When compared to our results, sim-
lar isotherms have been observed for calix[8]arene monolayers
t the air–water interface. The surface pressure increased with
ecreasing surface area without an obvious phase transition up to
0 mN m−1. The floating monolayer was found to be stable at the
urface pressure value of 22.5 mN m−1 which is selected for LB film
eposition process.

.2. Deposition properties

.2.1. UV–visible results
Fig. 3 shows typical UV–vis absorption spectra of calix[8]arene

olecule as a solution in chloroform and absorption band observed
t 280 nm. A similar spectrum of the same compound as an LB film
ith different layer numbers deposited onto the quartz substrate

s shown in Fig. 4. UV–vis spectra of calix[8]acid LB films exhibit
lightly red-shifted absorption bands compared to the spectrum

f the chloroform solution. The shift in the absorption band of
he LB film may be the result of some kind of molecular aggrega-
ion which takes place during film formation, such as dimerization
33,34]. UV–vis spectra have been used to monitor the effect of

Fig. 3. The UV–visible spectra of calix[8]acid solution.
Fig. 4. UV–vis absorption of calix[8]arene LB film. Inset: linear relationship between
absorbance and the number of bilayers, corresponding to the thickness of the films.

the solvent on the complexation properties between chromogenic
calix[4]arene derivatives and metallic cations with extensive stud-
ies being made in solvents such as tetrahydrofuran, chloroform,
methanol, acetone, ethanol, acetonitrile, dimethylformamide and
dimethyl sulfoxide [35]. These results showed that the UV–vis spec-
tra of the calixarenes are highly solvent dependent because the
position, intensity and the shape of the absorbance bands of each
compound in solution, have varied with changes in solvent and a
red shift is commonly observed. Similar work has been found by
Moreira et al. [32,36] using a calix[4]resorcinarene octafunctional-
ized with methyl �-acetate or methyl �-acetamide when deposited
as LB films on several different substrates.

The UV–vis absorption spectra of multilayered films consist-
ing of polyvinylamine (PVA) and calix[4,6 or 8]arenes have been
studied to monitor transport properties using similar experimen-
tal conditions. The optical absorption spectra of these films were
quite different depending on the size of calixarene rings, when the
ring size increases in the ratio 4:6:8, the absorption increases in
the ratio 1:2:3. It is proposed that the small rings tend to desorbs
more easily because the number of sulfonate groups per molecule
is smaller and small and large calixarene rings generally attain dif-
ferent conformations [37].

The inset in Fig. 4 shows a plot of the absorbance at 280 nm of the
deposited calix[8]acid LB film versus the number of LB film layers
and the linear relationship confirms a fairly constant transfer ratio
during sequential dipping of the slide through the LB monolayer.

3.2.2. Quartz crystal microbalance results
When the surface of a quartz crystal electrode is coated with a

sensitive coating, it is possible to construct a mass sensitive sen-
sor. Therefore, QCM measurements have been widely used for the
confirmation of the reproducibility of LB film multilayers using
the relationship between the QCM frequency changes against the
deposited mass, which should depend on the number of layers
in the LB film [9,38–40]. The resonant frequency, �f, of the QCM
crystal for an LB film is described by:

�f = −2f 2
0 �m

Kq
N (1)
where f0 is the resonant frequency of the fundamental mode of the
crystal (Hz), �m is the mass per unit area per layer (g), N is the num-
ber of deposition layers, Kq = (�q�q)1/2A, A is the piezo-electrically
active area (cm−2), �q is the density of quartz (2.648 g cm−3), �q

is the shear modulus of quartz (2.947 × 1011 g cm−1 s−2). It is clear
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with a theoretical model (solid curve) allows determination of the
layer thickness and refractive index of the deposited LB layers.
Fig. 7a illustrates SPR intensity versus angle curves for the clean
gold surface, and Fig. 7b for surfaces with two deposited layers of
LB films. Similar calculation was carried out using films with 4, 6,
Fig. 5. Frequency changes as a function of layer numbers.

hat this equation has a linear relationship between the number
f layers and the change in resonant frequency for an LB film that
onfirms the uniform transfer process of the LB film.

Fig. 5 shows the transfer of calix[8]acid LB film onto a quartz
rystal substrate. A systematic change in the frequency with the
ncrease in the number of monolayers is clearly shown however,
here are two regions observed for the change of resonant fre-
uency. Initial changes up to seven deposited layers show a slope
f 49.8 Hz and the deposited mass per monolayer is determined
o be 693 ng. In the second region between 9 and 27 monolayers,
he slope of graph and the deposited mass per layer decreased to
4.6 Hz and 204 ng, respectively. This decrease of deposition quality
nto the quartz crystal substrate could be due to a change of the sur-
ace morphology of deposited layers. The change of frequency as a
unction of the number of monolayers is closely associated with the
B layer mass change, and the deposition process is strongly depend
n the surface interaction between substrate and monolayer at the
ater–air interface.

.2.3. Surface plasmon resonance results
To get further insight into the deposition properties of the mul-

ilayer assemblies, surface plasmon reflectivity scans were taken

rom calix[8]acid LB films of different thicknesses. SPR measure-

ents were made on the LB films deposited onto gold-coated glass
ubstrates at a lateral pressure of 22.5 mN/m. The LB monolay-
rs were transferred uniformly onto gold-coated glass substrate
ith Y-type deposition. Fig. 6 displays a set of typical SPR curves

ig. 6. SPR curves of calix[8]acid LB films with increase in thickness. Inset: linear
ncrease of thickness as a function of number of bilayers.
tors B 148 (2010) 358–365 361

showing the variations in reflected intensity as a function of inci-
dence angle for LB films. The SPR curve for the bare gold film is
also included for reference. The SPR curves of the overlayer con-
taining the LB films become broader and the minimum reflected
intensity rises to a higher value as the number of LB layers is pro-
gressively increased. Similar SPR curve changes have been observed
for novel octa-substituted metal-free phthalocyanine LB films [41].
The peak shifts (��) seen in the angular scans of the plasmon res-
onance curves of the LB film multilayer assemblies relative to bare
gold, increased linearly with the number of layers. Furthermore, the
observed results showed that in the case of calix[8]acid LB film, the
width of the peaks broadens asymmetrically with increasing thick-
nesses, possibly due to an increasing surface inhomogeneity for the
multilayers [42]. The multilayer thickness was found to be linearly
related to the number of layers deposited, as seen by the linear
increase in shift of SPR angles with the number of layers shown in
the inset of Fig. 6. SPR measurements were made on several samples
which reproducibly demonstrated similar characteristic features.

3.2.4. Calculation of refractive index and thickness of calix[8]acid
LB film

The film thickness and refractive index of calix[8]acid layers
were calculated by fitting the SPR curves with a Fresnel formula
algorithm via the Winspall software. Fitting the experimental data
Fig. 7. (a) Complete measured (dots) and fitted (lines) SPR curves for clean gold sur-
face and (b) complete measured (dots) and fitted (lines) SPR curves for 2 calix[8]acid
LB film.
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In order to study the potential application of this calix[8]acid
LB film in the field of VOCs sensing, the kinetic response of the LB
sample to saturated chloroform, benzene, toluene and ethyl alcohol
vapors was recorded by measuring the photodetector response as
ig. 8. Modeled layer thickness as a function of layer number for calix[8]acid LB
ayers. The solid line is a linear regression fit to the data (R2 = 0.9947).

and 10 layers. Fig. 8 shows that the thickness of the calix[8]acid
B films increases linearly with the number of layers, as expected
or this system. The thickness of this LB film determined by the
lope of the thickness versus layer number (Fig. 8) is found to
e 1.08 ± 0.07 nm/deposited layer with a refractive index value of
.21 ± 0.08.

In the literature Corey–Pauling–Koltun (CPK) models were used
o determine the molecular thickness of a calix[n]arene (n = 4 and 8)
alculated 1.5 nm [43]. X-ray studies [31] have shown that a similar
alix[8]arene but with slightly different substituents has a mono-
ayer thickness of 1.23 nm. Other work by Nabok et al. [44] utilized a
alix[8]arene material to produce a LB film multilayer structure and
tudied the physical properties of this film by SPR and ellipsometry
easurements. The thicknesses of calix LB film were determined

.33 nm from SPR system and 1.37 nm for ellipsometry measure-
ent. The refractive index of calix[n]arene (n = 4 and 8) has been
easured as 1.46 [31,45,46], 1.494 [47], 1.48 [48] and between 1.54

nd 1.43 [49], respectively. Katantseva et al. [50] studied the refrac-
ive index and thickness of several calix[n]arene molecules and
etermined refractive indexes between 1.47 ± 0.01 and 1.70 ± 0.01
long with thickness values from 0.80 ± 0.1 to 1.50 ± 0.1 nm.

.2.5. Atomic force microscopy results
Calix[n]arene derivatives can be deposited onto several

olid substrates such as quartz crystal [51], mica [52], sil-
con [53], cadmium arachidate [54], silver [55] and ITO
56]. These studies showed that the deposition is strongly
epend on the substrate surface. Root-mean-square (RMS) val-
es for 5,11,17,23,29,35-hexaformyl-37,38,39,40,41,42-hexakis(1-
-octyloxy)-calix[6]arene LB film have been found to be 2.2 nm,
MS value for 4 and 8 layers of meso-octaethylcalix[4]pyrrole LB
lms are found to be 3.3–5.2 nm respectively. RMS values of azo-
alix[4]arene LB films for a 5 �m × 5 �m area on glass substrates
re 0.5 nm, for a silicon substrate 0.72 nm and a ITO substrate to be
.69 nm.

The morphological examination of calix[8]acid LB film was car-
ied out using AFM in tapping mode. Fig. 9 depicts 3 �m × 3 �m
reas of two and three dimensional AFM images of a 15 layer
alix[8]acid LB film deposited at a rate of 25 mm min−1 onto an
ptically flat hydrophilic glass substrate. This measurement was
epeated using different area regions of LB film sample and the

urface morphologies were very similar to these AFM pictures. It is
ery clear that LB film exhibited a smooth, compact, uniform and
oid free morphology with a RMS value of 1.202 nm.
Fig. 9. (a) AFM two dimensional imagine for a 15-layers LB film sample and (b) AFM
three dimensional imagine for a 15-layers LB film sample.

4. Sensor application
Fig. 10. Kinetic response of calix[8]acid LB film against VOCs (values for saturated
vapours: chloroform 205,000 ppm, benzene 106,000 ppm, toluene 28,700 ppm,
ethanol 57,700 ppm).
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organic vapor sensing proeperties of Langmuir–Blodgett film using a new three
oxygen-linked phthalocyanine incorparating lutetium, Sensors and Actuators
R. Çapan et al. / Sensors and

function of time. The LB film sample was periodically exposed to
he organic vapor for 2 min, followed by the injection of dry air for
further 2 min period. Fig. 10 shows the kinetic response of the

alix[8]acid LB film to the vapors. This LB film shows a response
o all vapors with a fast, reproducible and reversible response after
ushing the gas cell with fresh air. The response of the LB film in the

orm of SPR response to saturated chloroform exposures is much
arger than the other vapors with recovery times of the order of a
ew seconds (3 s for response and 5 s for recovery times) when the
as cell is flushed with dry air.

The adsorption mechanism of chloroform and benzene vapors
as been studied for spun films of mesogenic octa-substituted
hthalocyanine (Pc) derivatives [57]. Chloroform vapor interacts
ith phthalocyanine films predominantly by formation of hydro-

en bonds between CHCl3 molecules and the alkyl chains of the Pc
ing substituents and exposure to chloroform vapor was found to
ave more pronounced effect on the optical parameters of these
lm than benzene. The film thickness also increased as a result of
lm swelling [57]. It is clear that exposure of LB films to organic
apors yield an effect on the optical parameters such as chang-
ng the thickness and refractive index of LB film [46–48]. The
ensing mechanism for calix[4]resorcinarene LB films has been
tudied using QCM, ellipsometry and SPR techniques. The results
ere interpreted in terms of capillary condensation of organic

apors in the nanoporous matrix of the calixarene LB films accom-
anied by film swelling of the LB films caused by adsorption

eading to changes of the thickness and refractive index [46]. An
mphiphilic calix[4]resorcinarene thin film was exposed to ben-
ene, toluene, ethylbenzene, and m-xylene (BTEX) and showed a
ast and reversible response. It was found that the refractive index
f the sensing layer is changed due to the host–guest interaction
etween the cavitand molecules and the vapor molecules [47,48].
he response of the calix[8]acid LB films studied in this article
owards chloroform can therefore be ascribed to a similar adsorp-
ion mechanism. �–� interactions between benzene or toluene

olecules and the calix[8]acid rings are thought to be responsi-
le for the interaction between these two molecules, with similar

nteractions between benzene and phthalocyanine thin films hav-
ng been demonstrated by Basova et al. [57] using the Raman
pectral changes in the region of the macrocycle vibrations. The
dsorption mechanism of butanol which has a dipole moment
ssociated with the OH group, was also studied for spun films
f azo-calix[4]resorcinarene (AZO) [58]. The interaction of AZO
olecules with OH groups is limited, and therefore the solubil-

ty in butanol, as well as in other alcohols, is rather low. Therefore
utanol exhibited the smallest response than other vapors within
hat system and similar results have been shown for our LB films
ith ethanol. Various other systems have utilized calixarene lay-

rs to detect organic vapors. Piezoelectric crystals coated with
alix[4]resorcinarenes displayed very high sensitivities of a few
pm for 2-butanone but much lower sensitivities for hydrocarbons
100s of ppm) [59]. Other workers utilized an optical technique
60] to detect alcohol vapors which although it was much less
ensitive (>10,000 ppm) could distinguish between different alco-
ols. Electrical sensors based on discontinuous gold films coated
ith evaporated films of calixarenes could detect water and alco-
ol vapors in the range 20–90% of saturated vapor concentration
61]. Quartz crystal based systems coated with spin coated films of
alixarenes have been shown to be able to detect toluene and hex-
ne at between 10–80% saturated vapor concentration [62]. Other
orkers used quartz crystal microbalances coated with thermally

vaporated calixarenes and reported detection limits of 1000 ppm
or toluene and 200 ppm for chloroform [63]. LB films and cast

lms have been compared for their sensitivity towards vapors [64],
esults showing that cast films were more sensitive although LB
lms gave faster response.
tors B 148 (2010) 358–365 363

5. Conclusion

The characterization and VOCs sensing applications of thin LB
film of a calix[8]acid molecule have been studied using UV–vis
spectroscopy, QCM, SPR and AFM methods. Isotherm results indi-
cated that this molecule gives a stable monolayer at the air–water
interface with no phase transitions. A surface pressure value of
22.5 mN/m at solid phase is selected for the LB film deposition
process which monitored using all measurement systems. A plot
of UV–vis absorbance band at 280 nm as a function of number of
layers gives a linear relationship proving that this material can
be deposited onto the quartz substrate. Similar linear relation-
ships that were obtained with respect to deposited mass onto
quartz crystal substrate were taken for QCM measurements with
two regions observed for resonant frequencies versus layer num-
ber. A fast slope change occurred for small layer numbers with a
deposited mass value of 693 ng. When the number of layers
increased, the deposited mass per layer decreased. According
to SPR results, the LB film transfer onto a gold-coated sub-
strate is found to be successful and monolayers were transferred
uniformly onto gold-coated glass substrates. The film thickness
and refractive index of calix[8]acid LB films is found to be
1.08 ± 0.07 nm/deposited layer and 1.21 ± 0.08, respectively. AFM
measurements demonstrated that LB films exhibited a smooth,
compact, uniform and void free morphology with a rms value of
1.202 nm. A SPR system was employed to study the sensing prop-
erties of calix[8]acid LB films towards VOCs (chloroform, benzene,
toluene and ethyl alcohol). The response of these LB films to satu-
rated chloroform vapor was much larger than the other vapors and
showed response and recovery times of a few seconds. It can be pro-
posed that this sensing element deposited onto gold-coated glass
substrate has an excellent sensitivity and selectivity for chloroform
vapor and may find potential applications in the development of
room temperature organic vapor sensing devices.

Acknowledgment

This work is supported by Turkish Scientific and Technological
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