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In this paper, a generalized difference-based estimator is introduced for the vector parameter β in the semi-
parametric regression model when the errors are correlated.A generalized difference-based Liu estimator is
defined for the vector parameter β in the semiparametric regression model. Under the linear nonstochastic
constraint Rβ = r, the generalized restricted difference-based Liu estimator is given. The risk function
for the β̂GRD(η) associated with weighted balanced loss function is presented. The performance of the
proposed estimators is evaluated by a simulated data set.
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1. Introduction

Semiparametric regression models have received considerable attention in statistics and
econometrics. In these models, some of the relations are believed to be of certain parametric
form while others are not easily parameterized. Consider the semiparametric regression model

yi = X ′
iβ + f (ui) + εi, i = 1, 2, . . . , n, (1)

where X ′
i = (xi1, xi2, . . . , xip) is a vector of explanatory variables, β = (β1, β2, . . . , βp)

′ is an
unknown p-dimensional parameter vector, the ui are known and nonrandom in some bounded
domain D ⊂ �, f (·) is an unknown smooth function, and ε′s are independent and identically
distributed random errors with mean 0 and variance σ 2 and are independent of (X ′

i , ui).
We shall call f (u) the smooth part of the model and assume that it represents a smooth

unparametrized functional relationship. The ui have bounded support, say the unit interval, and
have been arranged so that u1 ≤ u2 ≤ · · · ≤ un. The goal is to estimate the unknown parameter
vector β and nonparametric function f (u) from the data {yi, Xi, ui}. This will be done through a
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difference-based estimation. In the vector/matrix notation, the model (1) is written as

y = Xβ + f + ε, (2)

where y = (y1, . . . , yn)
′, X = [X1, . . . , Xn]′, f = (f (u1), . . . , f (un))

′, ε = (ε1, . . . , εn)
′.

Semiparametric linear regression models are more flexible than the standard linear regression
models since they combine both parametric and nonparametric components when it is believed
that the response variable y depends on variable X in a linear way but is nonlinearly related to other
independent variable U. All the existing approaches for the semiparametric regression model are
based on different nonparametric regression procedures. There have been several approaches to
estimate β and f . Among the most important approaches are given by several researchers.[1–7]

In model (2), Yatchew [8] concentrates on the estimation of the linear component and used
differencing to eliminate bias induced by the presence of the nonparametric component.Yatchew’s
method does not require an estimator of the function f and are often called the difference-based
estimation procedure. Provided that f (·) is differentiable and the u’s are closely spaced, it is
possible to remove the effect of the function f by differencing the data appropriately.[9]

In regression analysis, researchers often encounter the problem of multicollinearity. In the case
of multicollinearity we know that the correlation matrix might have one or more small eigenvalues
which cause the estimates of the regression coefficients to be large in absolute value. The least-
squares estimator performs poorly in the presence of multicollinearity. Multicollinearity is defined
as the existence of nearly linear dependency among column vectors of the design matrix X in
the linear model y = Xβ + ε. The existence of multicollinearity may lead to wide confidence
intervals for the individual parameters or linear combination of the parameters and may produce
estimates with wrong signs. Condition number is a measure of the presence of multicollinearity.
If X ′X is ill conditioned with a large condition number, ridge regression estimator [10] or Liu
estimator [11] can be used to estimate β.

To apply shrinkage estimators is well known as an efficient remedial measure in order to
solve problems caused by multicollinearity. For the purposes of this paper, we will employ the
shrinkage estimator that was proposed by Liu [11] to combat multicollinearity. Liu [11] combined
the Stein [12] estimator with the ordinary ridge regression estimator to obtain what we call the Liu
(Linear Unified) estimator (see [13,14]). We assume that the condition number of the parametric
component is large indicating that a biased estimation procedure is desirable. Its parametric part
has the same structural form as the classical methods.

In this paper, a generalized restricted difference-based estimator is introduced for the vector
parameter β in the semi parametric regression model when the errors are correlated. A general-
ized difference-based Liu estimator is defined for the vector parameter β in the semiparametric
regression model. Under the linear nonstochastic constraint Rβ = r, the generalized restricted
difference-based Liu estimator is given.

We also examine the risk performance of the estimators under study when the weighted balanced
loss function (BLF) is used.

In order to compare the performance of the different estimators, a simulation study is conducted
where the risk function is used as performance criteria and factors, including the degree of cor-
relation, the sample size, the variance of the dependent variable and the number of explanatory
variables are varied.

The paper is organized as follows. In Section 2, the model and difference-based estimator is
defined. The generalized difference-based Liu estimator and restricted generalized difference-
based Liu estimator of β are introduced in Section 3. Section 4 gives the risk function for
the β̂GRD(η) associated with weighted BLF. Comparison results are given in Section 5. The
performance of the new estimator is evaluated by a simulated data set in Section 6.
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2. The model and difference-based estimator

In this section we use a difference-based technique to estimate the linear regression coefficient
vector β. This technique has been used to remove the nonparametric component in the semi-
parametric regression model by various authors (e.g. [8,9,15,16]). Consider the following
semiparametric regression model

y = Xβ + f + ε, (3)

where f is an unknown smooth function and has a bounded first derivative.
Yatchew [8] suggested estimating β on the basis of the mth order differencing equation

m∑
j=0

djyi−j =
⎛
⎝ m∑

j=0

djxi−j

⎞
⎠ β +

⎛
⎝ m∑

j=0

djf (ui−j

⎞
⎠ +

⎛
⎝ m∑

j=0

djεi−j

⎞
⎠ , i = m + 1, . . . , n, (4)

where d0, d1, . . . , dm are differencing weights.

2.1. How does the approximation work?

Suppose ui are equally spaced on the unit interval and f ′ ≤ L. By the mean value theorem,
for some u∗

i ∈ [ui−1, ui] we have

f (ui) − f (ui−1) = f ′(u∗
i )(ui − ui−1) ≤ L

n

Note that with m = 1 from (4) we have

yi − yi−1 = (xi − xi−1)β + f (ui) − f (ui−1) + εi − εi−1

= (xi − xi−1)β + O

(
1

n

)
+ εi − εi−1

≈ (xi − xi−1)β + εi − εi−1.

We then estimate the linear regression coefficient β by the ordinary least-squares estimator based
on the differences. Then we obtain the least-squares estimate β̂diff =

∑
(yi−yi−1)(xi−xi−1)∑

(xi−xi−1)2 .
Now let d = (d0, d1, . . . , dm)′ be a (m + 1)-vector, where m is the order of differencing

and d0, d1, . . . , dm are differencing weights minimizing mind0,...,dm δ = ∑m
l=1

(∑m−l
j=0 djdl+j

)2

satisfying the conditions

m∑
j=0

dj = 0 and
∑

j = 0md2
j = 1. (5)

Let us define the (n − m) × n differencing matrix D to have first and last rows [d ′, 0′
n−m−1],[0′

n−m−1, d ′] respectively, with the ith row [0i, d ′, 0′
n−m−i−1], i = 2, . . . , (n − m − 1), where 0r

indicates
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an r-vector or all zero elements

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0 d1 d2 . . . dm 0 0 . . . 0
0 d0 d1 d2 . . . dm 0 0 . . . 0
. . .
. . .
. . .
0 0 0 . . . d0 d1 . . dm 0
0 0 0 . . . d0 d1 . . dm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Applying the differencing matrix to model (3) permits direct estimation of the parametric effect.
As a result of developments in Speckman.[4] it is known that the parameter vector β in (3) can
be estimated with parametric efficiency. We now show the difference-based estimators that can
be used for this purpose. Since the data have been ordered so that the values of the nonparametric
variable(s) are close, the application of the differencing matrix D in model (3) removes the non-
parametric effect in large samples. If f is an unknown function that is the inferential object and
has a bounded first derivative, then Df is close to 0, so that by applying the differencing matrix
we have

Dy = DXβ + Df + Dε, (6)

which is approximately equal to DXβ + Dε,
or

ỹ ≈ X̃β + ε̃ (7)

where ỹ = Dy, X̃ = DX and ε̃ = Dε. So that the role of the constraints (5) is now evident.[9,
p. 57,15] Yatchew [9] defines a simple differencing estimator of the parameter β in the semipara-
metric regression model. Thus, standard linear models considerations suggest estimating β by

β̂diff = [(DX)′(DX)]−1(DX)′(Dy). (8)

This estimator was first proposed in [8]. Thus, differencing allows one to perform inferences on
β as if there were no nonparametric component f in the model (3) (see [8,17]). The modified
estimator of σ 2, defined as

σ̂ 2 = ỹ′(I − P)ỹ

tr(D′(I − P)D)
, (9)

where tr(·) is the trace function for a square matrix and P is the projection matrix and defined as

P = X̃(X̃ ′X̃)−1X̃ ′. (10)

(see [9]).

3. Semiparametric regression models with correlated errors

In this section we consider the following semiparametric model:

y = Xβ + f + ε

with E(ε) = 0 and E(εε′) = σ 2V . So, ε̃ = Dε is a (n − m)-vector of disturbances distributed with

E(ε̃) = 0 and E(ε̃ε̃′) = σ 2DVD′ = σ 2VD,

where VD = DVD′ 	= In−m is a known (n − m) × (n − m) symmetric positive-definite (p.d.)
matrix and σ 2 > 0 is an unknown parameter (see Roozbeh et al. [17]). It is well known that adopt-
ing the linear model (7), the unbiased estimator of β is the following generalized difference-based
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estimator given by

β̂GD = (X̃ ′V−1
D X̃)−1X̃ ′V−1

D ỹ. (11)

and the modified estimator of σ 2, defined as

σ̂ 2
GD = (ỹ − X̃β̂GD)′V−1

D (ỹ − X̃β̂GD)

tr[D′(I − P̃)D]

= ỹ′V−1/2
D (I − P̃)V−1/2

D ỹ

tr[D′(I − P̃)D] , (12)

where P̃ is the projection matrix and defined as P̃ = V−1/2
D X̃(X̃ ′V−1

D X̃)−1X̃ ′V−1/2
D . It is observed

from Equation (11) that the properties of the generalized difference-based estimator of β depend
on the characteristics of the information matrix X̃ ′V−1

D X̃ = G.
If G : p × p, p << n − m matrix is ill-conditioned with a large condition number, then the β̂GD

produces large sampling variances. Moreover, some regression coefficients may be statistically
insignificant and meaningful statistical inference becomes difficult for the researcher. We assume
that the condition number of the G matrix is large indicating that a biased estimation procedure
is desirable.

3.1. Generalized difference-based restricted Liu estimator

In this section, we will discuss a biased estimation technique when the matrix G appears to
be ill-conditioned. In the literature, there are various biased estimation methods to combat the
multicollinearity problem, such as ridge regression estimator β̂(k) = (Z ′Z + kI)−1Z ′y, k > 0,
[10] and the Liu estimator β̂η = (Z ′Z + I)−1(Z ′Z + ηI)β̂OLS, 0 < η < 1.[11,13] As a remedy,
following [11] we suggest to use the following estimator, namely, generalized difference-based
Liu estimator:

β̂GD(η) = (X̃ ′V−1
D X̃ + I)−1(X̃ ′V−1

D ỹ + ηβ̂GD). (13)

Applying a penalizing function of the squared norm‖ ηβ̂GD − β ‖2 to the generalized least-squares
objective (ỹ − X̃β)′V−1

D (ỹ − X̃β) for the vector of regression coefficients yields a conditional
objective:

F(β) = arg min
β

[(ỹ − X̃β)′V−1
D (ỹ − X̃β)+ ‖ ηβ̂GD − β ‖2]. (14)

The first-order condition of the objective (14) minimized by vector β is

∂F

∂β
= 0. (15)

From condition (15) of minimizing (14) by the vector β, we obtain the generalized difference-
based Liu estimator given by Equation (13).

Now, we consider the linear nonstochastic constraint

Rβ = r. (16)

For a given q × p matrix R with rank q < p and a given q × 1 known vector r. We will call an
estimator β∗(y) for β a restricted estimator with respect to Rβ = r, if it satisfies Rβ∗(y) = r for all
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n × 1 vectors y (see [18]). Subject to the linear rectriction (16), the generalized difference-based
restricted estimator is given by

β̂GRD = β̂GD + G−1R′(RG−1R′)−1(r − Rβ̂GD). (17)

where G = X̃ ′V−1
D X̃ is the information matrix.We can obtain generalized difference-based

restricted Liu estimator to improve the generalized difference-based estimator by minimizing
the sum of squared residuals with a restriction Rβ = r. Now, we can state the following theorem.

Theorem 1 The estimate of β in model (7) obtained by using Equation (14), satisfying condition
(16), is equal to

β̂GRD(η) = β̂GD(η) + (G + I)−1R′[R(G + I)−1R′]−1(r − Rβ̂GD(η)). (18)

Proof We construct the following Lagrange function:

L(β, λ) = (ỹ − X̃β)′V−1
D (ỹ − X̃β)+ ‖ ηβ̂GD − β ‖2 −2λ′(Rβ − r). (19)

By differencing function L with respect to β and λ, we obtain

1

2

∂L

∂β
= −X̃ ′V−1

D ỹ + X̃ ′V−1
D X̃β − ηβ̂GD + β − R′λ = 0, (20)

1

2

∂L

∂λ
= Rβ − r = 0. (21)

Solving Equation (20) with respect to β, we obtain

β = β̂GD(η) + (G + I)−1R′λ. (22)

If we substitute β into Equation (21), we have

Rβ̂GD(η) + R(G + I)−1R′λ = r. (23)

Solving Equation (23) with respect to λ, we obtain the optimal value of λ as

λ̂ = [R(G + I)−1R′]−1(r − Rβ̂GD(η)). (24)

Finally, the estimate of β may be written as

β̂GRD(η) = β̂GD(η) + (G + I)−1R′[R(G + I)−1R′]−1(r − Rβ̂GD(η)). (25)

It is easy to see that β̂GRD(η) satisfies Rβ̂GRD(η) = r. Thus, β̂GRD(η) is the generalized difference-
based restricted Liu estimator of β in model (7). �

Theorem 2 If β satisfies the linear restriction (16), then

bias(β̂GRD(η)) = E(β̂GRD(η)) − β = −(1 − η)Mβ. (26)

where C = G + I and M = C−1 − C−1R′(RC−1R′)−1RC−1.
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Proof The bias of the generalized difference-based Liu estimator is calculated as follows:

E(β̂GD(η)) = E[(G + I)−1(G + ηI)β̂GD]
= [I − (1 − η)C−1]β. (27)

and

bias(β̂GD(η)) = −(1 − η)C−1β.

Then the bias of β̂GD is obtained by letting η = 1 in Equation (27) as follows E(β̂GD − β) = 0.
Let β0 = R′(RR′)−1r, it can be clearly seen that β0 satisfies the linear restriction Rβ = r. So

we have

β̂GRD(η) = β̂GD(η) + C−1R′(RC−1R′)−1(r − Rβ̂GD(η))

= C−1Cβ̂GD(η) + C−1R′(RC−1R′)−1r − C−1R′(RC−1R′)−1RC−1Cβ̂GD(η)

= MCβ̂GD(η) + β0 − MCβ0, (28)

From (27) and (28) we have

E(β̂GRD(η)) = MC[I − (1 − η)C−1]β + β0 − MCβ0

= MC(β − β0) + β0 − (1 − η)Mβ. (29)

Since the restrictions Rβ = r are assumed to be true and Rβ0 = r, we can easily obtain

MC(β − β0) = (I − Rg3 R)(β − β0),

= (β − β0) − Rg3(Rβ − Rβ0) = β − β0, (30)

where Rg3 = R− = C−1R′(RC−1R′)−1 is a normalized generalized inverse of R (see Pringle and
Rayner [19, p. 15]). Thus, we obtain

E(β̂GRD(η)) = β − β0 − (1 − η)Mβ + β0

= β − (1 − η)Mβ (31)

and

bias(β̂GRD(η)) = −(1 − η)Mβ. (32)

Since M is a nonzero matrix, β̂GRD(η) can be an unbiased estimator if and only if η = 1.
Thus, the proof is completed. �

3.2. The risk function for the β̂GRD(η) associated with weighted BLF

Roozbeh et al. [17] calculated the risk function for the generalized difference-based restricted
ridge estimator under the weighted BLF. In this section, we calculate the risk function for the
proposed estimator, β̂GRD(η). To derive the risk function of the estimator, it is necessary to specify
the loss function under study. Considering the goodness-of-fit and precision of estimation together,
Zellner [20] has considered the following loss function:

L(β∗, β) = w(X̃β∗ − ỹ)′(X̃β∗ − ỹ) + (1 − w)(X̃β∗ − X̃β)′(X̃β∗ − X̃β), (33)

where w is a nonstochastic weight such that 0 ≤ w ≤ 1. Now, we consider the following
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weighted BLF:

L(β̂GRD, β) = w(X̃β̂GRD − ỹ)′V−1
D (X̃β̂GRD − ỹ) + (1 − w)(X̃β̂GRD − X̃β)′V−1

D (X̃β̂GRD − X̃β)

(34)
β̂GRD is the generalized difference-based restricted estimator of β and V−1

D is the weight matrix.
The risk function associated with the BLF given by Equation (34) is as follows:

R(β̂GRD, β) = E(L(β̂GRD, β)). (35)

Substituting ỹ ≈ X̃β + ε̃ in Equation (35), the risk function of the estimator under study can
bewritten as

R(β̂GRD, β) = E(L(β̂GRD, β) = wE{(X̃β̂GRD − ỹ)′V−1
D (X̃β̂GRD − ỹ)

+ (1 − w)(X̃β̂GRD − X̃β)′V−1
D (X̃β̂GRD − X̃β)}

= E{(β̂GRD − β)′X̃ ′V−1
D X̃(β̂GRD − β)} + wE[ε̃′V−1

D ε̃]
− 2wE[(β̂GRD − β)X̃ ′V−1

D ε̃]. (36)

(i) Since E(ε̃) = 0 and E(ε̃ε̃′) = σ 2VD, then we have

E(ε̃′V−1
D ε̃) = tr(ε̃ε̃′V−1

D ) = σ 2 tr(VDV−1
D ) = σ 2 tr(In−m) = σ 2(n − m). (37)

(ii) Since β̂GD = (X̃ ′V−1
D X̃)−1(X̃ ′V−1

D ỹ) and β̂GRD = β̂GD + G−1R′(RG−1R′)−1(r − Rβ̂GD),
from Theorem 2, we have

β̂GRD = M0Gβ̂GD + β0 − M0Gβ0

= M0G(G−1X̃ ′V−1
D ỹ) + β0 − M0Gβ0

= β − M0X̃ ′V−1
D ε̃,

where G = X̃ ′V−1
D X̃ . Then we have

β̂GRD − β = M0X̃ ′V−1
D ε̃. (38)

Thus, we obtain

E{(β̂GRD − β)′X̃ ′V−1
D ε̃} = E[ε̃′V−1

D X̃M0X̃ ′V−1
D ε̃] = E{tr[ε̃ε̃′V−1

D X̃M0X̃ ′V−1
D ]}

= σ 2 tr(M0G).

(iii)

E{(β̂GRD − β)′X̃ ′V−1
D X̃(β̂GRD − β)} = tr{E[ε̃′V−1

D X̃M0GM0X̃ ′V−1
D ε̃]

= σ 2 tr(M0G),

where M0GM0 = M0. Finally, we have

R(β̂GRD, β) = wσ 2(n − m) + σ 2tr(M0G) − 2wσ 2tr(M0G).

Since

M0G = (G−1 − G−1R′(RG−1R′)−1RG−1)G = I − R−R,
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and

tr(M0G) = tr(I − R−R) = tr(Ip) − tr(RR−) = tr(Ip) − tr(Iq) = p − q,

then we obtain

R(β̂GRD, β) = wσ 2(n − m) + σ 2(p − q) − 2wσ 2(p − q). (39)

Now, we consider the following weighted BLF:

L(β̂GRD(η), β) = w(X̃β̂GRD(η) − ỹ)′V−1
D (X̃β̂GRD(η) − ỹ)

+ (1 − w)(X̃β̂GRD(η) − X̃β)′V−1
D (X̃β̂GRD(η) − X̃β), (40)

where β̂GRD(η) is the generalized difference-based restricted Liu estimator of β and V−1
D is

the weight matrix. The risk function associated with the BLF given by Equation (40) is as
follows:

R(β̂GRD(η), β) = E(L(β̂GRD(η), β)). (41)

Substituting ỹ ≈ X̃β + ε̃ in Equation (41), the risk function of the estimator under study can
be written as

R(β̂GRD(η), β) = wE{(X̃β̂GRD(η) − ỹ)′V−1
D (X̃β̂GRD(η) − ỹ)

+ (1 − w)(X̃β̂GRD(η) − X̃β)′V−1
D (X̃β̂GRD(η) − X̃β)}

= E{(β̂GRD(η) − β)′X̃ ′V−1
D X̃(β̂GRD(η) − β)}

+ wE[ε̃′V−1
D ε̃] − 2wE[(β̂GRD(η) − β)X̃ ′V−1

D ε̃] (42)

(iv) Since β̂GD(η) = (X̃ ′V−1
D X̃ + I)−1(X̃ ′V−1

D ỹ + ηβ̂GD), from Theorem 2, we have

β̂GRD(η) = MCβ̂GD(η) + β0 − MCβ0

= MCC−1(G + ηI)β̂GD + β0 − MCβ0

= M(G + ηI)G−1X̃ ′V−1
D ỹ + β0 − MCβ0

= β − (1 − η)Mβ + M(G + ηI)G−1X̃ ′V−1
D ε̃,

where C = G + I . Then we obtain,

E{(β̂GRD(η) − β)′X̃ ′V−1
D ε̃} = E[{M(G + ηI)G−1X̃ ′V−1

D ε̃ − ((1 − η)Mβ)}′X̃ ′V−1
D ε̃]

= σ 2 tr[M(G + ηI)]. (43)

Since MC = I − R−R and tr(I − R−R) = p − q, thus we have tr[M(G + ηI)] =
tr[MC − (1 − η)M] = tr(MC) − (1 − η)tr M = (p − q) − (1 − η)tr M and E{(β̂GRD(η) −
β)′X̃ ′V−1

D ε̃} = σ 2(p − q) − σ 2(1 − η)tr M = σ 2(p − q) − σ 2(1 − η)tr M.



156 F. Akdeniz et al.

(v)

E{(β̂GRD(η) − β)′X̃ ′V−1
D X̃(β̂GRD(η) − β)}

= σ 2 tr[M(G + ηI)G−1(G + ηI)MG] + (1 − η)2{β ′MGMβ}
= σ 2 tr[(G + ηI)G−1(G + ηI)MGM] + (1 − η)2{β ′MGMβ}
= σ 2 tr[(G + ηI)G−1(G + ηI)(M − M2)] + (1 − η)2{β ′MGMβ}. (44)

Finally, combining (37), (43) and (44) we have

R(β̂GRD(η), β) = wσ 2(n − m) − 2wσ 2(p − q) − 2w(1 − η)σ 2tr M

+ σ 2 tr[(G + ηI)G−1(G + ηI)(M − M2)] + (1 − η)2{β ′MGMβ}. (45)

4. Comparison results

In this section, we provide the necessary and sufficient conditions for which the estimator β̂GRD(η)

performs better than β̂GRD in the sense that R(β̂GRD(η), β) ≤ R(β̂GRD, β) From Equations (35) and
(45), the difference 	̃ = R(β̂GRD, β) − R(β̂GRD(η), β) is given by

	̃ = []{wσ 2(n − m) + σ 2(p − q) − 2wσ 2(p − q)} − {wσ 2(n − m) − 2wσ 2(p − q)

− 2w(1 − η)σ 2trM + σ 2tr[(G + ηI)G−1(G + ηI)(M − M2)] + (1 − η)2 tr(β ′MGMβ)}
= σ 2(p − q) + 2w(1 − η)σ 2 tr M − σ 2 tr[(G + ηI)G−1(G + ηI)(M − M2)]

− (1 − η)2 tr(β ′MGMβ)} (46)

when Rβ = r. Since, MCM = M and

[(G + ηI)G−1(G + ηI)(M − M2)] = (C − (1 − 2η)I + η2G−1)(M − M2),

we have

tr(C − (1 − 2η)I + η2G−1)(M − M2)

= tr{CM − (1 − 2η)M − CM2 + (1 − 2η)M2 + η2G−1(M − M2)}
= (p − q) − (1 − 2η)tr(M) − tr(MCM) + (1 − 2η)tr(M2) + η2tr(G−1(M − M2)).

Thus,

	̃ = 2σ 2(1 − w)(1 − η) tr M − 2σ 2(1 − η) tr M2

+ σ 2(1 − η2)tr(G−1(M − M2)) − (1 − η)2β ′MGMβ, (47)

d

dη
	̃ = −2σ 2(1 − w) tr M + 2σ 2 tr M2 − 2σ 2η tr[G−1(M − M2)] + 2(1 − η)β ′MGMβ = 0

⇒ ηopt = −σ 2(1 − w) tr M + σ 2 tr M2 + β ′MGMβ

β ′MGMβ + σ 2 tr[G−1(M − M2)]

= −σ 2 tr(M − M2) + σ 2w trM + β ′(M − M2)β

β ′(M − M2)β + σ 2 tr[G−1(M − M2)] , (48)

d2

dη2
	̃ = −2σ 2 tr[G−1(M − M2)] − 2β ′MGMβ. (49)
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So, if −β ′(M − M2)β < σ 2 tr[G−1(M − M2)], we can conclude that ηopt maximizes the 	̃ and
is the best η.

5. Simulation study

In this section, we examine the risk function performance of the proposed estimators. Our sampling
experiment consists of different combinations of η and w, i.e.

η = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} and w = {0.1, 0.3, 0.5, 0.7, 0.9}. and

w = {0.1, 0.3, 0.5, 0.7, 0.9} .

To achieve different degrees of collinearity, following McDonald and Galarneau [21] and Gibbons
[22] the explanatory were generated using the following device for n = 1000:

xij = (1 − γ 2)1/2zij + γ zip, i = 1, 2, . . . , n, j = 1, 2, . . . , p, (50)

where zij are independent standard normal pseudo-random numbers, and γ is specified so that
the correlation between any two explanatory variables is given by γ 2. These variables are then
standardized so that X ′X and X ′Y are in correlation forms. Three different set of correlation
corresponding to γ = 0.80, 0.90 and 0.99 are considered. Then n observations for the dependent
variable are determined by

yi =
6∑

j=1

xjiβj + f (ti) + εi, i = 1, 2, . . . , n, (51)

where β = (3, 1, 3, 2, −5, 4) and ε ∼ N(0, σ 2V) for which the elements of V are

νij =
(

1

n

)|i−j

, σ 2 = 6 and

f (ti) = 1

6

∑
j=1, j 	=4,6

ϕ

(
ti; j,

[
j + 2

10

]j
)

,

which is mixture of normals for ti = 10i/n and φ(x; μ, σ 2) is a normal density function with mean
μ and variance σ 2.

In model (51) the parametric effect, β, is estimated by a differencing procedure. Optimal
differencing weights do not have analytic expressions, but may be calculated easily using an
optimization routine. Hall et al. [23] present weights to order m = 10. These contain some minor
errors. Optimal difference sequences for 1 ≤ m ≤ 10 can be found in [9]. For the simulation
study, we used order m = 4. For orders higher than 4, the estimators did not give any better
results, therefore we did not include them in the simulation study for restrictive purposes. The
fourth-order optimal differencing weights, for example d0 = 0.8873, d1 = −0.3099, d2 = 0.2464,
d3 = −0.1901 and d4 = −0.1409 in which m = 4 (see [9, p. 61]). Now, we define the (n − 4) × n
differencing matrix as

D =

⎛
⎜⎜⎜⎝

d0 d1 d2 d3 d4 0 0 · · · 0
0 d0 d1 d2 d3 d4 0 · · · 0
...

. . .
...

0 0 · · · 0 d0 d1 d2 d3 d4

⎞
⎟⎟⎟⎠
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Table 1. Evaluation of parameters and risk functions for different values of η and w (n = 1000 and γ = 0.8).

η 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

β̂1 3.0342 3.0314 3.0285 3.0257 3.0229 3.0201 3.0173 3.0117 3.01 3.0090 3.0062
β̂2 0.9824 0.9839 0.9853 0.9868 0.9882 0.9896 0.9911 0.9939 0.9939 0.9953 0.9967
β̂3 2.9795 2.9812 2.9829 2.9845 2.9862 2.9879 2.9896 2.9929 2.9929 2.9926 2.9962
β̂4 2.0074 2.0068 2.0062 2.0056 2.0049 2.0043 2.0037 2.0025 2.0025 2.0019 2.0013
β̂5 −4.9994 −4.9995 −4.9995 −4.9995 −4.9996 −4.9996 −4.9997 −4.9998 −4.9998 −4.9998 −4.9999
β̂6 4.0643 4.0589 4.0536 4.0483 4.0430 4.0377 4.0325 4.0221 4.0221 4.0169 4.0117
R(w = 0.1) 444.000 443.977 443.959 443.945 443.937 443.933 443.934 443.940 443.950 443.965 443.984
R(w = 0.3) 473.600 473.575 473.555 473.540 473.530 473.525 473.524 473.528 473.537 473.550 473.568
R(w = 0.5) 503.200 503.173 503.152 503.135 503.124 503.117 503.114 503.117 503.124 503.135 503.151
R(w = 0.7) 532.800 532.772 532.748 532.730 532.717 532.708 532.704 532.705 532.710 532.720 532.735
R(w = 0.9) 562.400 562.370 562.345 562.325 562.310 562.300 562.294 562.293 562.297 562.306 562.318
	̃(w = 0.1) −0.0153 0.0075 0.0256 0.0388 0.0472 0.0509 0.0499 0.0443 0.0340 0.0192 0.0000
	̃(w = 0.3) −0.0318 −0.0071 0.0125 0.0274 0.0375 0.0428 0.0434 0.0394 0.0308 0.0176 0.0000
	̃(w = 0.5) −0.0482 −0.0219 −0.0005 0.0160 0.0277 0.0347 0.0370 0.0346 0.0276 0.0160 0.0000
	̃(w = 0.7) −0.0646 −0.0366 −0.0135 0.0046 0.0180 0.0266 0.0305 0.0298 0.0244 0.0144 0.0000
	̃(w = 0.9) −0.0810 −0.0513 −0.0266 −0.0067 0.0083 0.0185 0.0241 0.0250 0.0212 0.0128 0.0000
m̂ 0.0378 0.0370 0.0362 0.0355 0.0349 0.0342 0.0337 0.0331 0.0326 0.0322 0.0315
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Table 2. Evaluation of parameters and risk functions for different values of η and w (n = 1000 and γ = 0.9).

η 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

β̂1 3.0070 3.0036 3.0001 2.9967 2.9933 2.9899 2.9865 2.9831 2.9797 2.9764 2.9730
β̂2 0.9963 0.9981 0.9999 1.0016 1.0034 1.0051 1.0069 1.0086 1.0103 1.0120 1.0137
β̂3 2.9957 2.9978 2.9999 3.0019 3.0039 3.0060 3.0080 3.0100 3.0120 3.0140 3.0160
β̂4 2.0015 2.0007 2.0000 1.9992 1.9985 1.9978 1.9970 1.9963 1.9955 1.9948 1.9941
β̂5 −4.9998 −4.9999 −4.9999 −5.0000 −5.0001 −5.0001 −5.0002 −5.0002 −5.0003 −5.0003 −5.0004
β̂6 4.0132 4.0067 4.0003 3.9938 3.9874 3.9810 3.9747 3.9683 3.9620 3.9557 3.9495
R(w = 0.1) 444.000 443.971 443.949 443.933 443.922 443.918 443.919 443.926 443.939 443.957 443.980
R(w = 0.3) 473.600 473.569 473.545 473.526 473.514 473.507 473.507 473.512 473.522 473.539 473.560
R(w = 0.5) 503.200 503.167 503.141 503.120 503.106 503.097 503.094 503.097 503.106 503.120 503.140
R(w = 0.7) 532.800 532.765 532.736 532.714 532.698 532.687 532.682 532.683 532.690 532.702 532.720
R(w = 0.9) 562.400 562.363 562.332 562.308 562.289 562.277 562.270 562.269 562.274 562.284 562.300
	̃(w = 0.1) −0.0191 0.0092 0.0315 0.0477 0.0581 0.0626 0.0614 0.0544 0.0418 0.0236 0.0000
	̃(w = 0.3) −0.0393 −0.0088 0.0154 0.0338 0.0462 0.0527 0.0535 0.0485 0.0379 0.0217 0.0000
	̃(w = 0.5) −0.0594 −0.0269 −0.0005 0.0198 0.0343 0.0428 0.0456 0.0426 0.0340 0.0197 0.0000
	̃(w = 0.7) −0.0796 −0.0450 −0.0165 0.0059 0.0223 0.0329 0.0377 0.0367 0.0300 0.0178 0.0000
	̃(w = 0.9) −0.0998 −0.0631 −0.0325 −0.0080 0.0104 0.0230 0.0298 0.0308 0.0261 0.0158 0.0000
m̂ 0.06706 0.06705 0.06704 0.06703 0.06701 0.03700 0.06699 0.06698 0.06697 0.06696 0.06695
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Table 3. Evaluation of parameters and risk functions for different values of η and w (n = 1000 and γ = 0.99).

η 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

β̂1 3.0347 3.0295 3.0244 3.0193 3.0143 3.0092 3.0042 2.9993 2.9943 2.9894 2.9845
β̂2 0.9822 0.9848 0.9874 0.9900 0.9926 0.9952 0.9978 1.0003 1.0028 1.0053 1.0078
β̂3 2.9792 2.9823 2.9853 2.9884 2.9914 2.9944 2.9974 3.0004 3.0033 3.0063 3.0092
β̂4 2.0075 2.0064 2.0053 2.0042 2.0031 2.0020 2.0009 1.9998 1.9987 1.9977 1.9966
β̂5 −4.9994 −4.9995 −4.9996 −4.9996 −4.9997 −4.9998 −4.9999 −5.0000 −5.0000 −5.0001 −5.0002
β̂6 4.0651 4.0554 4.0458 4.0363 4.0268 4.0173 4.0080 3.9986 3.9894 3.9802 3.9710
R(w = 0.1) 444.000 443.958 443.926 443.902 443.887 443.881 443.883 443.893 443.911 443.937 443.971
R(w = 0.3) 473.600 473.555 473.520 473.493 473.475 473.466 473.465 473.472 473.487 473.511 473.542
R(w = 0.5) 503.200 503.152 503.113 503.084 503.063 503.051 503.047 503.051 503.064 503.085 503.113
R(w = 0.7) 532.800 532.749 532.707 532.675 532.651 532.636 532.629 532.631 532.640 532.658 532.684
R(w = 0.9) 562.400 562.346 562.301 562.266 562.239 562.221 562.211 562.210 562.217 562.232 562.255
	̃(w = 0.1) −0.0283 0.0131 0.0456 0.0692 0.0841 0.0906 0.0886 0.0784 0.0601 0.0339 0.0000
	̃(w = 0.3) −0.0574 −0.0128 0.0226 0.0492 0.0671 0.0764 0.0774 0.0700 0.0546 0.0312 0.0000
	̃(w = 0.5) −0.0865 −0.0389 −0.0003 0.0292 0.0500 0.0623 0.0661 0.0616 0.0490 0.0284 0.0000
	̃(w = 0.7) −0.1155 −0.0649 −0.0233 0.0092 0.0330 0.0481 0.0549 0.0532 0.0435 0.0256 0.0000
	̃(w = 0.9) −0.1446 −0.0909 −0.0463 −0.0108 0.0159 0.0340 0.0436 0.0448 0.0379 0.0229 0.0000
̂MSE(f̂ (u), f (u)) 0.09180 0.08918 0.08664 0.08416 0.08176 0.07942 0.07715 0.07494 0.07279 0.07071 0.06861
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Figure 1. The diagram of 	̃ versus η for different values w and γ = 0.8. Top left: w = 0.1; top right: w = 0.3; middle
left: w = 0.5; middle right: w = 0.7 and bottom left: w = 0.9.
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For the linear restriction, the R matrix is given by

R =

⎛
⎜⎜⎜⎜⎝

1 5 −3 −1 −1 0
−2 −1 0 −2 3 1
1 2 1 3 −2 0
4 −1 2 2 0 −2
5 3 4 −5 1 0

⎞
⎟⎟⎟⎟⎠

and r is a vector, i.e. r = [00000]′.

Figure 2. The diagram of 	̃ versus η for different values w and γ = 0.9. Top left: w = 0.1; top right: w = 0.3; middle
left: w = 0.5; middle right: w = 0.7 and bottom left: w = 0.9.
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All computations were conducted using the R statistical system. The matrix G has condition
numbers 44.4, 78.49, and 787.82 for γ = 0.8, γ = 0.9 and γ = 0.99, respectively, which implies
the existence of multicollinearity in the data set. In Tables 1–3 we computed the generalized
difference-based restricted Liu estimators of parameters and risk functions values. We numerically
calculated the R(β̂GRD, β), 	̃ and

̂MSE(f̂ (u), f (u)) = 1

n

n∑
i=1

[f̂ (ui) − f (ui)]2

Figure 3. The diagram of 	̃ versus η for different values w and γ = 0.99. Top left: w = 0.1; top right: w = 0.3; middle
left: w = 0.5; middle right: w = 0.7 and bottom left: w = 0.9.
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Figure 4. Estimation of the function under study by local linear regression for n = 1000. The function (top
left), the data (top right) and the residuals obtained after estimation of the linear part of the model by β̂GRD,
that is, y − Xβ̂GRD (middle left), the fitted function for η = 1 (middle right), the residuals obtained after esti-
mation of the linear part of the model by β̂GRD(0.5) (bottom left) and the fitted function for η = 0.5 (bottom
right).

for different η and w values when n = 1000. In Figures 1–3 we plotted the 	̃ versus Liu parameter
η for different values of w and γ . Our methods were applied to several simulated data sets. Because
the results were similar across cases, to save space, we reported here only the results for n = 1000,
η = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} and w = {0.1, 0.3, 0.5, 0.7, 0.9}.

In Figure 4, we plotted the nonparametric part of the model in the top left plot. This func-
tion is difficult to estimate and provides a good test for nonparametric regression methods.
The function is spatially inhomogeneous which means that its smoothness (second deriva-
tives) varies over u. The top right plot shows n = 1000 data points after removing the linear
part, i.e. y − Xβ. The middle left and right plot shows the residuals which are obtained
after estimation of the linear part of the model by β̂GRD and the fitted function, respectively.
The bottom left and right plots are the middle part when β̂GRD is replaced with β̂GRD(0.5)

when η = 0.9.
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6. Conclusions

In this paper, we proposed the generalized difference-based Liu estimator, β̂GD(η), in a
semiparametric regression model when the errors were dependent and some additional linear
restrictions were held on the whole parameter space β. In the presence of multicollinearity in a
semiparametric regression model, we introduced the generalized difference-based restricted Liu
estimator, β̂GRD(η).

The risk functions of the proposed estimators under the weighted BLF were obtained.
We continued the comparison study by some simulation strategies and graphical results. The

experiment was taken for different values of Liu parameter η and weight coefficient w in the
weighted BLF.

According to Tables 1–3 and Figures 1–3, it can be realized that for all the combinations of η

and w, β̂GRD(η) is better than β̂GRD if η > a, so that a is an increasing function of w.
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