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ABSTRACT
In this paper, a generalized difference-based estimator is introduced
for the vector parameter β in partially linear model when the errors
are correlated. A generalized-difference-based almost unbiased
two-parameter estimator is defined for the vector parameter β .
Under the linear stochastic constraint r = Rβ + e, we introduce a
new generalized-difference-based weighted mixed almost unbiased
two-parameter estimator. The performance of this new estimator over
the generalized-difference-based estimator and generalized- difference-
based almost unbiased two-parameter estimator in terms of the MSEM
criterion is investigated. The efficiency properties of the new estimator
is illustrated by a simulation study. Finally, the performance of the new
estimator is evaluated for a real dataset.

1. Introduction

Partially linear models have received considerable attention in statistics and econometrics.
They have a wide range of applications. In these models, some of the relations are believed to
be of certain parametric form, while others are not easily parameterized. Consider the par-
tially linear model

yi = x′
iβ + f (ui) + εi, i = 1, 2, . . . , n (1)

where x′
i = (xi1, xi2, . . . , xip) is a vector of explanatory variables, β = (β1, β2, . . . , βp)

′ is
an unknown p-dimensional parameter vector, the ui are known and non random in some
bounded domain D ⊂ �, f(.) is an unknown smooth function, and εi

′s are independent and
identically distributed random errors with E(εi) = 0, Var(εi) = σ 2, and are independent of
(xi, ui). We shall call f (u) the smooth part of the model and assume that it represents a
smooth unparametrized functional relationship. The u’s have bounded support, say the unit
interval, and have been rearranged so that u1 ≤ u2 ≤ · · · ≤ un.
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The goal is to estimate the unknown parameter vector β and non parametric function f(u)
from the data {yi, xi, ui}. In vector/matrix notation, the model (1) is written as

y = Xβ + f + ε (2)

where y = (y1, . . . , yn)′, X = [x1, . . . , xn]′, f = ( f (u1), . . . , f (un))′, ε = (ε1, . . . , εn)
′.

Partially linear regression models are more flexible than the standard linear regression
models, since they combine both parametric and non parametric components when it is
believed that the response variable y depends on variable X in a linear way but is non linearly
related to other independent variable U.

In model (2), Yatchew’s method does not require an estimator of the function f(.) and
are often called difference-based estimation procedure, provided that f(.) is differentiable and
the ui’s are closely spaced, it is possible to remove the effect of the function f(.) by differencing
the data appropriately (Yatchew 2003).

In regression analysis, researchers often encounter the problem of multicollinearity. In
case of multicollinearity, we know that the correlation matrix might have one or more small
eigenvalues which causes the estimates of the regression coefficients to be large in absolute
value. The least squares estimator performs poorly in the presence of multicollinearity. Mul-
ticollinearity is defined as the existence of nearly linear dependency among column vectors of
the design matrix X in the linear model y = Xβ + ε. The existence of multicollinearity may
lead to wide confidence intervals for the individual parameters or linear combination of the
parameters and may produce estimates with wrong signs. Condition number is a measure of
the presence ofmulticollinearity. IfX ′X is ill conditionedwith a large condition number, ridge
regression estimator (Hoerl and Kennard 1970) can be used to estimate β .

To apply shrinkage estimators is well known as an efficient remedial measure in order to
solve problems caused bymulticollinearity.We assume that the condition number of the para-
metric component is large indicating that a biased estimation procedure is desirable. Its para-
metric part has the same structural form as the classical methods.

Akdeniz and Tabakan (2009) introduced a ridge estimator for the vector of parameters in a
partially linear regression model when additional linear restrictions on the parameter vector
are assumed to hold. A difference-based ridge regression estimator of regression parameters
in the partial linear model is given in Tabakan and Akdeniz (2010). The difference-based
estimation procedure is optimal in the sense that the estimator of the linear component
is asymptotically efficient and asymptotically minimax rate optimal for the partial linear
model. (Wang, Brown, and Cai 2011). Arumairajan and Wijekoon (2014) proposed stochas-
tic restricted ordinary ridge estimator. Arashi et al. (2015) considered the estimation of
the restricted ridge regression parameter in singular models. Arashi and Valizadeh (2015)
proposed several estimators for estimating the biasing parameter in the study of partial linear
models in the presence of multicollinearity. Generalized-difference-based estimator is intro-
duced for the vector parameter β in the semiparametric regressionmodel when the errors are
correlated, by Akdeniz et al. (2015). Wu (2016) proposed a difference-based almost unbiased
Liu estimator for the vector of β in partial linear model. Roozbeh (2015) obtained the
necessary and sufficient conditions for the superiority of the shrinkage ridge type estimator
over its counterpart in the semiparametric regression model when the errors are dependent
and some non stochastic linear restrictions are imposed under a multicollinearity setting.

In this paper, a generalized-difference-based restricted estimator is introduced for the vec-
tor parameter β in partially linear model when the errors are correlated. A generalized-
difference-based ridge estimator is defined for the vector parameter β . Under the linear
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stochastic constraint r = Rβ + e, we introduced a newgeneralized-difference-basedweighted
mixed almost unbiased two-parameter estimator.

2. Difference-based estimator

In this section,we use a difference-based technique to estimate the linear regression coefficient
vector β . This technique has been used to remove the non parametric component in partially
linear model by various authors (e.g., Yatchew 1997, 2003 and Klipple and Eubank 2007).
Consider the following partially linear model

y = Xβ + f + ε (3)

Yatchew (1997) suggested estimating β on the basis of the mth order differencing
equation

m∑
j=0

djyk− j =
⎛
⎝ m∑

j=0

djxk− j

⎞
⎠β +

⎛
⎝ m∑

j=0

dj f (uk− j)

⎞
⎠+

⎛
⎝ m∑

j=0

djεk− j

⎞
⎠ , k = m + 1, . . . , n

(4)
Now let d = (d0, d1, . . . , dm)′ be a (m+ 1) vector, wherem is the order of differencing and

d0, d1, . . . , dm are differencing weights that minimize mind0,...,dm δ = ∑m
l=1 (

∑m−l
j=0 djdl+ j)

2

satisfying the conditions:
m∑
j=0

dj = 0 and
m∑
j=0

dj
2 = 1 (5)

Let us define the (n − m) × n differencing matrix D whose elements satisfy Equation (5)
as

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0 d1 d2 . . . dm 0 0 0 . . . 0 0
0 d0 d1 d2 . . . dm 0 0 0 . . . 0
. .

. . .

. . . .

0 0 0 . . . d0 d1 d2 . . . dm 0
0 0 0 . . . 0 0 d0 d1 . . . dm−1 dm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The goal of this step is to eliminate the effect of the non parametric component f(.). Apply-
ing the differencing matrix to model (3) permits direct estimation of the parametric effect.
As a result of developments in Roozbeh, Arashi, and Niroumand (2011), it is known that
the parameter vector β in Equation (3) can be estimated with parametric efficiency. We now
show the difference-based estimators that can be used for this purpose. Since the data have
been reordered 0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ 1 so that the values of the non parametric vari-
able(s) are close, the application of the differencing matrix D in model (3) removes the non
parametric effect in large samples (Yatchew 2003). If f(.) is an unknown function that is the
inferential object and has a bounded first derivative, then Df(.) is close to 0, so that applying
the differencing matrix we have

Dy = DXβ + D f + Dε (6)

which is approximately equal to DXβ + Dε, or

ỹ ∼= X̃β + ε̃ (7)
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where ỹ = Dy, X̃ = DX , and ε̃ = Dε. The role of the constraints (5) is now evident (Yatchew
2003 p. 57, Klipple and Eubank 2007). Yatchew (2003) defines a simple differencing estima-
tor of the parameter β in the semiparametric regression model. Thus, standard linear model
considerations suggest estimating β by

β̂diff = [
(DX )′(DX )

]−1
(DX )′(Dy) (8)

This estimator was first proposed in Yatchew (2003). Thus, differencing allows one to per-
form inferences on β as if there were no non parametric component f(.) in model (7) (see
Yatchew 1997).

3. Partially linear models with correlated errors

In this section, we consider the following partially linear model

y = Xβ + f + ε

with E(ε) = 0, and E(εε′) = σ 2V. So, ε̃ =Dε is a (n − m)vector of disturbances distributed
with

E(ε̃) = 0 and E(ε̃ε̃′) = σ 2DVD′ = σ 2VD (9)

whereVD = DVD′ �= In−m is a known (n − m) × (n − m) symmetric positive definite (p.d.)
matrix and σ 2 > 0 is an unknown parameter (see Roozbeh, Arashi, and Niroumand 2011). It
is well known that adopting the linear model (7), the unbiased estimator of β is the following
generalized-difference-based estimator (GDE) given by

β̂GDE =
(
X̃ ′V−1

D X̃
)−1

X̃ ′V−1
D ỹ (10)

It is observed from Equation (10) that the properties of the GDE of β depends on the
characteristics of the information matrix G = X̃ ′V−1

D X̃ .
If G:p× p, p << n − mmatrix is ill-conditioned with a large condition number, then the

β̂GDE produces large sampling variances.Moreover, some regression coefficientsmay be statis-
tically insignificant, and meaningful statistical inference becomes difficult for the researcher.
We assume that the condition number of the G matrix is large indicating that a biased esti-
mation procedure is desirable.

4. Weightedmixed regression and estimation of parameters

The use of prior information in linear regression analysis is well known to provide more effi-
cient estimators of regression coefficients. The available prior information sometimes can be
expressed in the form of exact, stochastic, or inequality restrictions.

We consider model (7):

ỹ ∼= X̃β + ε̃, ε̃ ∼ (0, σ 2DVD′) = (0, σ 2VD) (11)

When a set of stochastic linear constraints binding the regression coefficients in a linear
regression model is available, Theil and Goldberger (1961) have proposed the method of
mixed regression estimation. Their method typically assumes that the prior information in
the form of stochastic linear constraints and sample information in the form of observations
on the study variable and explanatory variables are equally important and therefore receive
equal weights in the estimation procedure.
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Totally, we donot have exact prior information such asRβ = r, involving estimation of eco-
nomic relations, industrial structures, production planning, etc. Therefore, stochastic uncer-
tainty occurs in specifying linear programming due to economic and financial studies.

In addition to sample model (11), it is supposed that a set of stochastic linear constraints
binding the regression coefficients is available in the form of independent prior information:

r = Rβ + e, e ∼ (0, σ 2W ) (12)

where R is a q × p known matrix with rank (R) = q, and e is a q × 1 vector of disturbances.
W is assumed to be known and positive definite, the q × 1 vector r can be interpreted as a
random variable with expectation E(r) = Rβ . Therefore the restriction in Equation (12) does
not hold exactly but in the mean and we assume r to be known, that is to be a realized value of
the random vector, so that all expectations are conditional on r as, for example, E(β̂|r)(Rao,
Toutenburg, and Shalab 2008). In order to take the information in Equation (12) into account
while constructing estimators β̂ for β , we require that E(Rβ̂|r) = r (see Toutenburg et al.
2003).

In model (12), we have assumed the structure of the dispersionmatrix of e, E(ee′) = σ 2W ,
that is, with the same factor of proportionality σ 2 as occurred in the samplemodel. Therefore,
it may some times be more realistic to suppose that E(ee′) = W . It is also assumed that the
random vector ɛ is stochastically independent of e.

When the sample information given by Equation (11) and prior information is described
by Equation (12) are to be assigned not necessarily equal weights on the basis of some extra-
neous considerations in the estimation of regression parameters, Schaffrin and Toutenburg
(1990) have proposed the method of weighted mixed regression estimation. Following their
technique, we obtain the generalized-difference-based weighted mixed estimator of β .

In order to incorporate the restrictions in Equation (12) in the estimation of parameters,
we minimize

(ỹ − X̃β)′V−1
D (ỹ − X̃β) + ω(r − Rβ)′W−1(r − Rβ) (13)

with respect to β . This leads to the following solution for β :

β̂GDWME(ω) = β̂(ω) = (G + ωR′W−1R)−1
(
X̃ ′V−1

D ỹ + ωR′W−1r
)

(14)

where ω is a non stochastic and non negative scalar weight with 0 ≤ ω ≤ 1 (ω = 0 would
lead to β̂GDE). It is seen that a value of ω between 0 and 1 specifies an estimator in which the
prior information receives less weight in comparison with the sample information. On the
other hand, a value of ω greater than 1 implies higher weight to the prior information which,
of course, may be of little practical interest. Since

(G + ωR′W−1R)−1 = G−1 − ωG−1R′(W + ωRG−1R′)−1RG−1 (15)

we have

β̂GDWME(ω) = β̂GDE + ωG−1R′(W + ωRG−1R′)−1(r − Rβ̂GDE) (16)

which is called generalized-difference-based weighted mixed estimator (GDWME).
If we substitute ω = 1 in Equation (14) , we get

β̂GDME = (G + R′W−1R)−1
(
X̃ ′V−1

D ỹ + R′W−1r
)

(17)

which is the generalized-difference-based mixed estimator (GDME). The ordinary mixed esti-
mator was proposed by Theil andGolberger (1961). This estimator gives equal weight to sam-
ple and prior information.



12264 F. AKDENİZ ANDM. ROOZBEH

Generalized ridge estimator proposed by Hoerl and Kennard (1970) is defined as

β̂GDRE(k) =
(
X̃ ′V−1

D X̃ + kI
)−1

X̃ ′V−1
D ỹ

= (G + kI)−1X̃ ′V−1
D ỹ = G−1

k X̃ ′V−1
D ỹ

= (I + kG−1)−1β̂GDE = Tkβ̂GDE (18)

where Gk = G + kI,Tk = G−1
k G = GG−1

k .

Akdeniz andErol (2003) discussed the almost unbiased ridge regression estimator (AURE),
which is given as follows:

β̂AURE(k) = (
I − k2S−2

k

)
β̂OLS (19)

where Sk = X ′X + kI, β̂OLS = (X ′X )−1X ′y. Similarly, we define the generalized-difference-
based almost unbiased ridge estimator (GDAURE) as follows:

β̂GDAURE(k) = (
I − k2G−2

k

)
β̂GDE. (20)

Li and Yang (2010) proposed the stochastic mixed ridge estimator, Liu, Yang, and Wu
(2013) introduced theweightedmixed almost unbiased ridge estimator based on theweighted
mixed estimator. Liu et al. (2014) considered two kinds of weighted mixed almost unbi-
ased estimators in a linear stochastic restricted regression model. Substituting β̂GDE with
β̂GDAURE(k) in β̂GDWME(ω), we describe a generalized-difference-based weighted mixed almost
unbiased ridge estimator (GDWMAURE), as follows:

Since

(W + ωRG−1R′)−1 = W−1 − ωW−1R(G + ωR′W−1R)−1R′W−1 (21)

and

ωG−1R′(W + ωRG−1R′)−1r = wG−1R′
[
W−1 − ωW−1R(G + ωR′G−1R)

−1R′W−1
]
r

=
[
G−1 − ωG−1R′W−1R(G + ωR′W−1R)

−1
]
ωR′W−1r

=
[
G−1 − G−1 { (G + ωR′W−1R) − G } (G + ωR′W−1R)

−1
]

× ωR′W−1r
=
[
G−1 − G−1

[
I − G(G + ωR′W−1R)

−1
]]

ωR′W−1r

= (G + ωR′W−1R)−1ωR′W−1r (22)

Using the equalities in Equations (20) and (22), we have

β̂GDWMAURE(ω, k) = β̂GDAURE(k) + ωG−1R′(W + ωRG−1R′)−1(r − Rβ̂GDAURE(k))

= (
I − k2G−2

k

)
β̂GDE + ωG−1R′(W + ωRG−1R′)−1

(
r − R

(
I − k2G−2

k

)
β̂GDE

)
= (G + ωR′W−1R)−1

[(
I − k2G−2

k

)
X̃ ′V−1

D ỹ + ωR′W−1r
]

(23)

In fact, from the definition of β̂GDWMAURE(ω, k), we can see that β̂GDWMAURE(ω, k) is general
estimator, and which includes the β̂GDE, β̂GDME, β̂GDAURE(k), and β̂GDWME(ω) as special cases.
Namely,

if k = 0, ω = 0, then β̂GDWMAURE(0, 0) = β̂GDE (24)
if k = 0 andω = 1, then β̂GDWMAURE(ω = 1, k = 0) = β̂GDME (25)

if ω = 0, then β̂GDWMAURE(ω = 0, k) = G−1(I − k2G−2
k )X̃ ′V−1

D ỹ,
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Observing that G−1 and (I − k2G−2
k ) are commutative, we have

β̂AU(ω = 0, k) == (
I − k2G−2

k

)
G−1X̃ ′V−1

D ỹ = (
I − k2G−2

k

)
β̂GDE = β̂GDAURE(k) (26)

if k = 0, then β̂AU(ω, k = 0) = (G + ωR′W−1R)−1
[
X̃ ′V−1

D ỹ + ωR′W−1r
]

= β̂GDWME(ω), (27)

Following, Özkale and Kaçıranlar (2007) and Wu and Yang (2013), we may define the
generalized-difference-based almost unbiased two-parameter estimator (GDAUTPE) in semi-
parametric partial linear models as follows:

β̂GDAUTPE(k, d) =
[
I − k2(1 − d)

2
(
X̃ ′V−1

D X̃ + kI
)−2

]
β̂GDE (28)

The bias vector and MSE matrix of β̂GDAUTPE(k, d) can be obtained as

b1 = Bias(β̂GDAUTPE(k, d) = −k2(1 − d)2(G + kI)−2β = −(I − Gkd)
2β

and

MSEM(β̂GDAUTPE(k, d)) = Cov(β̂GDAUTPE(k, d)) + b1b1′

= σ 2GkdG−1Gkd + b1b1′ (29)

where Gkd = I − k2(1 − d)2G−2
K .

β̂GDAUTPE(k, d) is a generalization of the generalized-difference-based almost unbiased ridge
estimator (GDAURE) and the generalized-difference-based almost unbiased Liu estimator
(GDAULE):

when d = 0, then β̂GDAUTPE(k, d = 0) = (
I − k2G−2

K

)
β̂GDE = β̂GDAURE(k) (30)

when k = 1, then β̂GDAUTPE(k = 1, d) = (I − (1 − d)2(G + I)−2)β̂GDE = β̂GDAULE(d)

(31)

Amodified two-parameter estimator is introduced for the vector of parameters in the linear
regression model in Dorugade (2014).

5. Mean squared error matrix comparisons of estimators

In this section, we compare the underlying estimators. For the convenience of the following
discussions, we give some lemmas here.

Lemma 1 (Farebrother 1976). Let A be a positive definite matrix, namely A > 0, and let α be
some vector, then A − αα′ ≥ 0 if and only if α′A−1α ≤ 1.

Lemma 2. Let n × n matrices M > 0 and N ≥ 0, then M > N if and only if λmax(NM−1)< 1.
(see Rao, Toutenburg, and Shalab 2008).

Lemma 3 (Trenkler and Toutenburg 1990). Let β̂ j = Ajy, j = 1, 2 be two competing estima-
tors of β. Suppose that 	 = Cov(β̂1) − Cov(β̂2)> 0. Then

MSEM(β̂1) − MSEM(β̂2) ≥ 0

if and only if b2′
(	 + b1b1′

)−1b2 ≤ 1, where b j denotes bias vector of β̂ j .
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The mean squared error matrix (MSEM) of an estimator β̃ is defined as

MSEM(β̃ ) = E(β̃ − β)(β̃ − β)′ = Cov(β̃ ) + Bias(β̃ )Bias(β̃ )′

where Cov(β̃ ) is the dispersion matrix and Bias(β̃ ) = E(β̃ ) − β is the bias vector.

5.1. Proposed estimator: Generalized-difference-basedweightedmixed almost
unbiased two-parameter estimator

Using Equation (28) , we have generalized-difference-based weighted mixed almost unbiased
two-parameter estimator (GDWMAUTPE):

β̂GDWMAUTPE(ω, k, d) = β̂GDAUTPE(k, d) + ωG−1R′(W + ωRG−1R′)−1

× (r − Rβ̂GDAUTPE(k, d)) (32)

B
[
{ I − k2(1 − d)

2G−2
k } X̃ ′V−1

D ỹ + ωR′W−1r
]

(33)

where B = (G + ωR′W−1R)−1.

Bias(β̂GDWMAUTPE(ω, k, d)) = −k2(1 − d)2BG−2
K Gβ = b2 (34)

and

MSEM(β̂GDWMAUTPE(ω, k, d)) = σ 2B(GkdGGkd + ω2R′W−1R)B + b2b′
2 (35)

5.2. MSEM comparison between β̂GDAUTPE(k,d) and β̂GDWMAUTPE(ω, k,d)

Theorem 1. Let k > 0, 0 < d < 1, and 0 < ω < 1. When λmax(NM−1) < 1, β̂GD(ω, k, d) =:
β̃2 is superior to β̂GDAUTPE(k, d) =: β̃1 in the MSEM sense, namely 	1 ≥ 0 if and only if
b2′

(
 + b1b1′
)−1b2 ≤ 1.

Proof. We consider the MSEM difference between β̂GDAUTPE(k, d)= : β̃1 and β̂GD(ω, k,
d) =: β̃2 as

	1 = MSEM(β̂GDAUTPE(k, d)) − MSEM(β̂GD(ω, k, d))

= σ 2GkdG−1Gkd − σ 2BGkdGGkdB′ + Bω2R′W−1RB + b1b1′ − b2b2′

= 
 + b1b1′ − b2b2′ (36)

Now consider


 = Cov(β̃1) − Cov(β̃2) = σ 2GkdG−1Gkd − σ 2 [BGkdGGkdB + Bω2R′W−1RB
]

= σ 2(M − N) (37)

whereM = GkdG−1Gkd and N = [BGkdGGkdB + Bω2R′W−1RB].
Note that M = GkdG−1Gkd > 0, and N = [B(GkdGGkd + ω2R′W−1R)B] > 0. When

λmax{B(GkdGGkd + ω2R′W−1R)B (GkdG−1Gkd)
−1} < 1, we can get that 
 > 0, by applying

Lemma 2. Thus, from Equation (36) and applying Lemma 3, we have 	1 ≥ 0 if and only if
b2′

(
 + b1b1′
)−1b2 ≤ 1. This result completes the proof. �
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5.3. MSEM comparison of the GDE andGDWMAUTPE

First, a difference-based model (7) can be transformed to a canonical form by the orthogonal
transformation. A symmetric matrix G = X̃ ′V−1

D X̃ has an eigenvalue-eigenvector decompo-
sition of the form G = Q�Q′, where Q is an orthogonal matrix such that

Q′GQ = Q′X̃ ′V−1
D X̃Q = Q′X̃ ′V−1/2

D V−!/2
D X̃Q = X̄ ′X̄ = � = diag(λ1, λ2, . . . , λp)

where λi is the eigenvalue of G. Then, we get canonical form of model (7) as

V−1/2
D ỹ = V−1/2

D X̃β +V−1/2
D ε̃

and

y∗ = X∗β + ε∗ = X∗QQ′β + ε∗ = X̄ β̄ + ε∗ (38)

where y∗ = V−1/2
D ỹ, X̄ = X∗Q = V−1/2

D X̃Q, ε∗ = V−1/2
D ε̃, β̄ = Q′β .

Finally, we compare MSEM values between the GDE and GDWMAUTPE. From
Equations (10) and (35), the difference of MSEM values between the GDE and GDW-
MAUTPE can be computed by

	2 = MSEM(β̂GDE) − MSEM(β̂GDWMAUTPE(ω, k, d)). (39)

Theorem 2. The GDWMAUTPE is superior to the GDE according to the MSEM criterion,
namely 	2 ≥ 0 if and only if

b2′[
σ 2(G−1 − B(GkdGGkd + ω2R′W−1R)B

]−1b2 ≤ 1.

Proof. Using Equations (10) and (35), we obtain

	2 = (σ 2G−1 − σ 2B) + (σ 2B − MSEM(β̂(ω))) + (MSEM(β̂(ω)) − MSEM(β̃2)) − b2b′
2

(40)

where

MSEM(β̂(ω)) = σ 2B(G + ω2R′W−1R)B
MSEM(β̂GDE) = σ 2G−1

MSEM(β̃2 ) = σ 2B(GkdGGkd + ω2R′W−1R)B.

(i) Consider the following parts of Equation (40)

σ 2G−1 − σ 2B = σ 2 { G−1 − (G + ωR′W−1R)−1 }
= σ 2 { G−1 − (G−1 − wG−1R′(W + ωRG−1R′)−1RG−1 }
= σ 2ωG−1R′(W + ωRG−1R′)−1RG−1 > 0

(ii) Observing that B > 0, we have

σ 2B − MSEM(β̂(ω)) = σ 2B − σ 2B(G + ω2R′W−1R)B
= σ 2BB−1B − σ 2B(G + ω2R′W−1R)B
= σ 2B(B−1 − G − ω2R′W−1R)B
= σ 2B(G + ωR′W−1R − G − ω2R′W−1R)B
= σ 2ω(1 − ω)B(R′W−1R)B > 0
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(iii)

MSEM(β̂(ω)) − MSEM(β̃2) = σ 2B(Gω2R′W−1R)B − σ 2B(GkdGGkd + ω2R′W−1R)B
= σ 2B(G − GkdGGkd)B

where Gkd = I − k2(1 − d)2G−2
k = I − Tkd . Since G = Q�Q′, we can easily compute that

D = Q′(G − GkdGGkd)Q
= � − [

I − k2(1 − d)
2
(� + kI)−2]

�
[
I − k2(1 − d)

2
(� + kI)−2]

= Tkd� + �Tkd − Tkd�Tkd

D is a diagonal matrix and ith element is a positive number:

di = k2(1 − d)2
2λi

(λi + k)2
− k4(1 − d)4

λi

(λi + k)4

= k2(1 − d)
2
λi

(λi + k)4
[
(
√
2 − 1)k + √

2λi + kd
] [√

2(λi + k) + k(1 − d)
]

> 0,

i = 1, 2, . . . , p

which means that D > 0. Then we have σ 2BDB > 0. Applying Lemma 1, we can get that
	2 ≥ 0, if and only if b′

2	2
−1b2 ≤ 1. This completes the proof. �

6. Selection of biasing parameters k, d, and non stochastic weight ω

In this section, we give a method about to choose k, d, and w. First, consider the difference-
based model (7) and its canonical form as

y∗ = X∗β + ε∗ = X∗QQ′β + ε∗ = X̄ β̄ + ε∗ (41)

Note that, MSEM(
ˆ̄
βGD(ω, k, d) = Q′MSEM(β̂GD(ω, k, d))Q. We see that

�∗ = MSEM(
ˆ̄
βGD(ω, k, d)) = Q′ [σ 2B(GkdGGkd + ω2R′W−1R)B′ + b2b′

2
]
Q

where

B = (G + ωR′W−1R)−1, Gkd = I − k2(1 − d)2(G + kI)−2,

b2 = −k2(1 − d)2BG−2
k Gβ, Gk = G + kI

It is easy to compute that

�∗ = σ 2(� + ω)−1{[I − k2(1 − d)
2
(� + kI)−2]

�
[
I − k2(1 − d)

2
(� + kI)−2]

+ w2
}
(� + ω)−1 + k4(1 − d)4(� + ω)−1

× (� + kI)−2�β̄β̄ ′�(� + kI)−2(� + ω)−1

�∗ is a diagonal matrix and ith diagonal element is

ηi
∗ = (λi + ωξi)

−1

([
1 − k2(1 − d)

2

(λi + k)2

]2
σ 2λi + σ 2ω2ξi + k4(1 − d)

4
λ2
i β̄

2
i

(λi + k)4

)
(λi + ωξi)

−1.
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Thus, we obtain

MSE(
ˆ̄
βGD(ω, k, d)) = tr�∗ =

=
p∑

i=1

σ 2λi
[
(λi + k)2 − k2(1 − d)2

]2 + σ 2ω2ξi(λi + k)4 + k4(1 − d)4λ2
i β̄

2
i

(λi + k)4(λi + ωξi)
2

=
p∑

i=1

σ 2{(1 − v2
i )

2
λi + ω2ξi } + v4

i λ
2
i β̄

2
i

(λi + ωξi)
2 (42)

where νi = k(1−d)

λi+k .
Optimal values of k, d, andω can be derived byminimizing Equation (42) . First with fixed

values of d and w, it is easy to see that

∂MSE(
ˆ̄
βGD(ω, k, d))

∂vi
= 2σ 2(1 − v2

i )(−2vi)λi + 4v3
i λ

2
i β̄

2
i

(λi + ωξi)
2 (43)

or

2σ 2 (1 − v2
i

)
(−2vi)λi + 4v3

i λ
2
i β̄

2
i = 0 (44)

For a fixed d and ω, note that ∂MSE(
ˆ̄
βGD(ω,k,d))

∂k = ∂MSE(
ˆ̄
βGD(ω,k,d))

∂vi

∂vi
∂k = 0 implies

∂MSE(
ˆ̄
βGD(ω,k,d))

∂vi
= 0, since ∂vi

∂k = (1−d)λi
(λi+k)2

�= 0. Simplifying Equation (44) using νi, we obtain

λiv
2
i β̄

2
i − σ 2 + σ 2v2

i = 0 (45)

and

vi =
√

σ 2

λiβ̄
2
i + σ 2

= k(1 − d)

λi + k

Thus, the optimal choice of the parameter k is

kiopt = λiσ

(1 − d)

√
λiβ̄

2
i + σ 2 − σ

(46)

After the unknown parameters σ 2 and β̄2
i are replaced by their unbiased estimators, we get

optimal estimator of k for a fixed d value as

k̂iopt = λiσ̂

(1 − d)

√
λi

ˆ̄
β2
i + σ̂ 2 − σ̂

(47)

We can see that k is always positive, if we set a constraint on k-values in Equation (46) , so
that it is positive, then the positiveness of the estimator in Equation (47) can be obtained. In
this way, we have the following result: if

d̂ < 1 − min

⎡
⎣ σ̂√

λi
ˆ̄
β2
i + σ̂ 2

⎤
⎦ (48)

is selected for all i, then k̂iopt in Equation (47) is always positive.

For a fixed k and w, we note that ∂MSE(
ˆ̄
βGD(ω,k,d))

∂d = ∂MSE(
ˆ̄
βGD(ω,k,d))

∂vi

∂vi
∂d = 0 and ∂vi

∂d =
−k

λi+k �= 0, implies ∂MSE(
ˆ̄
βGD(ω,k,d))

∂vi
= 0 or v2

i (λiβ̄
2
i + σ 2) = σ 2 and vi =

√
σ 2

λiβ̄2
i +σ 2 = k(1−d)

λi+k .
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Thus, we have

diopt = 1 − (λi + k)σ
k

1√
λiβ̄

2
i + σ 2

(49)

After the unknown parameters σ 2 and β̄2
i are replaced by their unbiased estimators, we get

the optimal estimator of d for a fixed k value as

d̂iopt = 1 − (λi + k)σ̂
k

1√
λi

ˆ̄
β2
i + σ̂ 2

(50)

Note that, d̂iopt in Equation (50) is always less than 1, but it may be smaller than zero. d̂ in
Equation (48) is always less than 1 and greater than zero, that is d̂ ∈ (0, 1).

Remark. We know that when k = 1, β̄(ω, k, d) leads to the generalized-difference-based
weighted mixed almost unbiased Liu estimator. Therefore, when k = 1, d̂iopt in Equation (50)
reduces to the estimate of d given in Akdeniz and Kaçıranlar (1995).

d̂iopt = 1 − (1 + λi)σ̂√
λi

ˆ̄
β2
i + σ̂ 2

(51)

For a fixed k and d, note that

∂MSE(
ˆ̄
βGD(ω, k, d))

∂ω
= 2ωξiσ

2(ωξi + λi) − 2ξiσ 2[(1 − v2
i )

2
λi + ω2ξi]

(λi + ωξi)
3 = 0

then we have

ω = (1 − v2
i )

2 = (λi + kd)
2
(λi + 2k − kd)

2

(λi + k)4

and

ω̂opt = (λi + k̂d̂)
2
(λi + 2k̂ − k̂d̂)

2

(λi + k̂)
4 , 0 < ω̂opt < 1 (52)

7. Illustrative examples

In this section, we present some numerical examples to support our assertions. The process
is categorized into two setups: the first part is devoted to the Monte Carlo simulation stud-
ies, and the second one is application of our proposed estimation method to the electricity
consumption dataset collected in Germany.

7.1. Monte Carlo simulation studies

In this section, we continue the comparison of proposed estimators based on the scalar values
of mean squared error matrix by some simulations and graphical results. Since, theoretically,
these estimators are very difficult to compare, the Monte Carlo simulation studies have been
conducted to compare the efficiency of the estimators. The scalar-valued mean squared error
(SMSE) for any estimator β̃ is defined as

SMSE(β̃ ) = tr(MSEM(β̃ )) = tr(Cov(β̃ )) + Bias(β̃ )′Bias(β̃ )
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To achieve different degrees of collinearity, following McDonald and Galarneau (1975)
and Gibbons (1981), the explanatory variables were generated using the following device for
n = 30 with 10,000 iteration from the following model:

xi j = (1 − γ 2)
1
2 zi j + γ zip, i = 1, 2, . . . , n, j = 1, 2, . . . , p (53)

where zi j are independent standard normal pseudo-random numbers, and γ is specified so
that the correlation between any two explanatory variables is given by γ 2. These variables are
then standardized so that X ′X and X ′Y are in correlation forms. Four different sets of corre-
lation corresponding to γ = 0.75, 0.90, 0.95, and 0.99 are considered. Then n observations
for the dependent variable are determined by

yi =
6∑
j=1

xi jβ j + f (ui) + εi, i = 1, 2, . . . , n (54)

where

β = (3, 1, 3, −2, −5, 4)′, f (u) = exp
{
sin(u)cos(3u) + √

u
}

for u ∈ [0, 3] and

ε ∼ Nn(0, σ 2V ), σ 2 = 0.36, vi j = exp{−ϕ|i − j|}, ϕ = 2, i, j = 1, ∞ . . . , n

The parametric part of model (54), that is, β , is estimated by third-order differencing coef-
ficients, d0 = 0.8582, d1 = −0.3832, d2 = −0.2809, and d3 = −0.1942, and then, the non
parametric part is estimated by kernel methodology and cross-validation criteria.

Performance of estimations of the partially linear models greatly depends on the selection
of smoothing parameter (Aydin 2014). Cross-validation directly estimates the model predic-
tion error. It is the simplest andmost widely usedmethod for choosing the smoothing param-
eter for non parametric models. However, evaluating the leave one-out cross-validation tends
to be time-consuming for a partially linear model with even a moderate sample size. It adds
onemore level of difficulty if we want to conduct intensive numerical simulation studies, such
as using a bootstrap procedure to estimate the variance. Li, Zhang, and Wu (2011) proposed
an algorithm to quickly compute cross-validation.

Optimal differencing weights do not have analytic expressions but may be calculated eas-
ily using an optimization routine. Hall, Kay, and Titterington (1990) presented weights to
order m = 10. These contain some minor errors. Now, we define the (n − 3) × n differenc-
ing matrix as

D =

⎛
⎜⎜⎜⎝
d0 d1 d2 d3 0 0 ... 0
0 d0 d1 d2 d3 0 ... 0
...

. . .
...

0 0 ... 0 d0 d1 d2 d3

⎞
⎟⎟⎟⎠

For the restriction, we consider the following stochastic linear restrictions

r = Rβ + e, R =

⎛
⎜⎜⎜⎜⎝

1 5 −3 −1 −1 0
−2 −1 0 −2 3 1
1 2 1 3 −2 0
4 −1 2 2 0 −2
5 3 4 −5 1 0

⎞
⎟⎟⎟⎟⎠

where e ∼ Nq(0, σ 2
eW ), σ 2

e = 0.0036, wi j = ( 1
n )|i− j|, i, j = 1, . . . , q
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Figure . Non parametric function of model ().

Monte Carlo simulation is performed with M = 104 replications, obtaining the estima-
tors β̂(1) = β̂GDE, β̂(2) = β̂GDWME(ω̂opt), β̂(3) = β̂GDAURE(k̂opt), β̂(4) = β̂GDWMAURE(ω̂opt, k̂opt),
β̂(5) = β̂GDAUTPE(k̂opt, d̂opt), and β̂(6) = β̂GDWMAUTPE(ω̂opt, k̂opt, d̂opt) in the restricted partially
linear model. The corresponding estimator of the non linear part for the ith method is
obtained using kernel method as f̂(i) = K(y – Xβ̂(i)) for i = 1, . . . , 6, and K is the smoother
matrix.

The relative efficiencies of the abovemethods with respect to the firstmethod are estimated
as

Eff(β̂(i), f̂(i)) =
1
M

∑M
m=1 ‖y(m) − X (m)β̂

(m)

(1) − f̂ (m)

(1) ‖22
1
M

∑M
m=1 ‖y(m) − X (m)β̂

(m)

(i) − f̂ (m)

(i) ‖22
, i = 1, . . . , 6

where (X(m),y(m)) stands for the generated sample in the mth iteration, β̂ (m)

(i) and f̂ (m)

(i) are the
estimators obtained in themth iteration, and ‖v‖22 = ∑q

i=1 v2
i for v = (v1, . . . , vq)

′.
In Figure 1, the non parametric part of the model (54) is plotted. This function is difficult

to be estimated and provides a good test case for the non parametric regression method. All
computations were conducted using the statistical package R. In Tables 1–4, we computed

Table . Evaluation of parameters for proposed estimators with γ = ..

Method Coefficients GDE GDWME GDAURE GDWMAURE GDAUTPE GDWMAUTPE

β̂ . . . . . .
β̂ . . . . . .
β̂ . . . . . .
β̂ − . − . − . − . − . − .
β̂ − . − . − . − . − . − .
β̂ . . . . . .
SM◦SE(β̂

(i) ) . . . . . .

mŝe(f̂
(i), f) . . . . . .

Eff(β̂
(i), f̂(i) ) . . . . . .
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Table . Evaluation of parameters for proposed estimators with γ = ..

Method coefficients GDE GDWME GDAURE GDWMAURE GDAUTPE GDWMAUTPE
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β̂ − . − . − . − . − . − .
β̂ − . − . − . − . − . − .
β̂ . . . . . .
SM◦SE(β̂

(i) ) . . . . . .

mŝe(f̂
(i), f) . . . . . .

Eff(β̂
(i), f̂(i) ) . . . . . .

Table . Evaluation of parameters for proposed estimators with γ = ..

Method coefficients GDE GDWME GDAURE GDWMAURE GDAUTPE GDWMAUTPE

β̂ . . . . . .
β̂ . . . . . .
β̂ . . . . . .
β̂ − . − . − . − . − . − .
β̂ − . − . − . − . − . − .
β̂ . . . . . .
SM◦SE(β̂

(i) ) . . . . . .

mŝe(f̂
(i), f) . . . . . .

Eff(β̂
(i), f̂(i) ) . . . . . .

Table . Evaluation of parameters for proposed estimators with γ = ..

Method coefficients GDE GDWME GDAURE GDWMAURE GDAUTPE GDWMAUTPE

β̂ . . . . . .
β̂ . . . . . .
β̂ . . . . . .
β̂ − . − . − . − . − . − .
β̂ − . − . − . − . − . − .
β̂ . . . . . .
SM◦SE(β̂

(i) ) . . . . . .

mŝe(f̂
(i), f) . . . . . .

Eff(β̂
(i), f̂(i) ) . . . . . .

the proposed estimators at optimum values of parameters, ω̂opt, k̂opt, d̂opt, respectively. We
numerically estimated the SMSE’s, efficiencies of proposed estimators relative to GDE,
separately, and mŝe( f̂(i), f ) = 1

nM

∑M
m=1 ‖ f̂ (m)

(i) − f ‖22 for all proposed estimators. The 3D
diagrams as well as the 2D slices of SMSE versus parameters are plotted for proposed estima-
tors in Figures 2 and 3. Since the results were similar across cases, to save space we reported
only the results for γ = 0.90. Figure 4 shows the fitted function by kernel smoothing after
estimating the linear part of the model by proposed estimators for γ = 0.90.

7.2. Application to electricity consumption dataset

To motivate the problem of estimation in the semiparametric partial linear model, we apply
the electricity consumption, considered byAkdenizDuran,Härdle, andOsipenko (2012). The
variables are defined for 177 items as follows:



12274 F. AKDENİZ ANDM. ROOZBEH

Figure . Diagram of SMSE versus parameters for γ = 0.90. Top left: SMSE(β̂GDWME(ω)); top right:
SMSE(β̂GDAURE(k)); bottom left: SMSE(β̂GDWMAURE(ω, k)); bottom right: SMSE(β̂GDAUTPE(k, d)).

The dependent variable y is the logmonthly electricity consumption per person (LEC) and
the independent variables include log incomeper person (LI), log rate of electricity price to the
gas price (LREG), and cumulated average temperature index (Temp) for the corresponding
month taken as average of 20 German cities computed from the data of German weather
service.

To detect the non parametric part of the model, by Yatchew (2003), the test statistic for
the null hypothesis that the regression function has the parametric form, that is,H0 : f (u) =
h(u; β) for a parametric function h(.), against the non parametric alternative f (u), when one
uses optimal differencing weights, is

Z0 = √
nm

σ̂ 2 − σ̂ 2
diff

σ̂ 2
diff

D→N(0, 1) (55)

where σ̂ 2 = 1
n

∑n
i=1 (yi − h(u;β̂ ))

2
, σ̂ 2

diff = ỹ′(I−P)ỹ
tr(D′(I−P)D)

, P = X̃ (X̃ ′X̃ )−1X̃ .
We consider Temp as a non parametric part (using a third-order differencing coefficients),

because, it has the largest value of non parametric significance test statistics among those of
other independent variables. The statistics of above test for all explanatory variables can be
found in Table 5. We also use the added-variable plots to identify the parametric and non
parametric components of the model (for more details, see Sheather 2009). Added-variable
plots enable us to visually assess the effect of each predictor, having adjusted for the effects of
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Figure . Diagram of SMSE(β̂GDWMAUTPE(ω, k, d)) versus parameters for γ = 0.90. Top left:
SMSE(β̂GDWMAUTPE(ω, k, d̂opt)); top right: SMSE(β̂GDWMAUTPE(ω, k̂opt, d)); bottom center:

SMSE(β̂GDWMAUTPE(ω̂opt, k, d)).

the other predictors. By looking at added-variable plot (Figure 5), we consider Temp as a non
parametric part and so, the specification of the semiparametric partial linear model is

(LEC)i =
11∑
j=1

β jxi j + β12(LI)i + β13(LREG)i + f (Tempi) + εi (56)

where x1, . . . , x11 are dummy variables for the monthly effects. The ratio of largest eigenvalue
to smallest eigenvalue for new designmatrix inmodel (55) after applying differencingmethod

Table . Values of test statistics ().

Variable Z

LI .
LREG .
Temp .∗
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Figure . Estimation of the function under study by kernel approach for γ = 0.90..

Figure . Added-variable plots of individual explanatory variables versus dependent variable, linear fit (red
solid line) and kernel fit (blue dashed line).
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Table . Evaluation of parameters for proposed estimators for real dataset.

Method variables GDE GDWME GDAURE GDWMAURE GDAUTPE GDWMAUTPE

x − . − . − . − . − . .
x − . − . − . − . − . − .
x − . − . − . − . − . − .
x − . . − . − . − . − .
x − . . − . . − . − .
x − . − . − . − . − . − .
x − . − . − . − . − . − .
x − . − . − . − . − . − .
x − . . − . − . − . − .
x − . − . − . − . − . − .
x − . . − . . − . − .
LI − . . . . . .
LREG − . . − . . − . − .
RSS . . . . . .
R . . . . . .

is approximately λ13/λ1 = 220.3069 and so, there exists a potential multicollinearity between
the columns of design matrix.

After a primary evaluation of model (56), one might consider the stochastic restriction
rRβ , where

R =
(
0 0 0 0 0 0 0 0 0 0 0 1 2
1 1 1 1 1 1 1 0 0 0 0 1 1

)
, r =

(−0.02
0

)

We test the linear hypothesis H0 : r � Rβ in the framework of our semiparametric partial
linear model (56). The test statistic for H0, given our observations, is

χ 2
rank(R) = (Rβ̂diff − r)′

(
R�̂

β̂diffR
′
)−1

(Rβ̂diff − r) = 0.05952

where �̂
β̂diff = (1 + 1

2m )σ̂ 2
diff (X̃ ′X̃ )−1 (see Yatchew [2]). The test statistic is not greater than

upper α-quantile of χ 2 distribution. Thus, we conclude that the null hypothesis H0 is not
rejected.

Figure . Estimations of non parametric part of model ().
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Table 6 shows a summery of the results. In this table, the RSS and R2, respectively, are
the residual sum of squares and coefficient of determination of the model, that is, RSS = y −
ŷ22, ŷ = X β̂(i) + f̂ (u), y = LEC andR2 = 1 – RSS/Syy, which are calculated for each proposed
estimators of β . For estimation of non parametric effect, at first we estimated the parametric
effects by one of the proposed estimators and then, local polynomial approach was applied to
fit LEC − X β̂(i) on u = Temp, where X = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, LI, LREG)
(Figure 6).

8. Conclusions

We considered the method of weighted mixed regression estimation to estimate the
regression coefficients in generalized-difference-based semiparametric partially linear
model. The generalized-difference-based weighted mixed almost unbiased ridge estimator,
β̂GDWMAURE(ω, k), is derived and its dominance over both the generalized-difference-based
weighted mixed estimator, β̂(ω), and the generalized-difference-based almost unbiased
ridge estimator, β̂GDAURE(k), is studied under the criterion of mean squared error matrix.
The generalized-difference-based weighted mixed almost unbiased two-parameter estimator,
β̂GDWMAUTPE(w, k, d), in semiparametric partial linear models is proposed. After some
theorems, the Monte Carlo simulation studies and a real data example have been conducted
to compare the performance of the proposed estimators numerically. The results from the
Monte Carlo simulations for n = 30, P = 6, and different γ are presented in Tables 1–4 and
Figures 1–4. From these tables, it can be seen that the factor affecting the performance of the
estimators is the degree of correlation (γ ). It can be concluded that GDWMAUTPE is leading
to be the best estimator among others for the parametric part of the model, since it offers
smaller SMSE and mse values in all proposed estimators. Further GDE is the worst estimator
for the parametric part in these examples. In general, the value of γ has positive effect on the
performance of the proposed estimators with respect to GDE. In the real example study, a
near dependency among the column of X ′X identified from λ13/λ1 = 220.3069, that is, the
design matrix may be considered as being very ill-conditioned and we had to consider the
ridge form of proposed estimators in our study. As it can be seen from Table 5 and Figure 5,
the non linear relation between log monthly electricity consumption per person (LEC) and
cumulated average temperature index (Temp) can be detected and so, the pure parametric
model does not fit to the data and semiparametric partial linear model fits more significantly.
Further, from Table 6 and Figure 6, it can be deduced that GDWMAUTPE is quite efficient
in the sense that it has significant value of goodness of fit.
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