
Stat Papers
DOI 10.1007/s00362-017-0893-9

REGULAR ARTICLE

Generalized difference-based weighted mixed almost
unbiased ridge estimator in partially linear models

Fikri Akdeniz1 · Mahdi Roozbeh2

Received: 9 March 2016 / Revised: 10 February 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract In this paper, a generalized difference-based estimator is introduced for the
vector parameter β in partially linear model when the errors are correlated. A gen-
eralized difference-based almost unbiased ridge estimator is defined for the vector
parameter β. Under the linear stochastic constraint r = Rβ + e, a new generalized
difference-based weighted mixed almost unbiased ridge estimator is proposed. The
performance of this estimator over the generalized difference-based weighted mixed
estimator, the generalized difference-based estimator, and the generalized difference-
based almost unbiased ridge estimator in terms of the mean square error matrix
criterion is investigated. Then, a method to select the biasing parameter k and non-
stochastic weight ω is considered. The efficiency properties of the new estimator is
illustrated by a simulation study. Finally, the performance of the new estimator is
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1 Introduction

Partially linear models have received considerable attention in statistics and econo-
metrics. They have a wide range of applications. In these models, some of the relations
are believed to be of certain parametric formwhile others are not easily parameterized.
Consider the partially linear model (PLM)

yi = x ′
iβ + f (ui ) + εi , i = 1, 2, . . . , n (1)

where x ′
i = (xi1, xi2, . . . , xip) is a vector of explanatory variables, β = (β1, β2, . . . ,

βp)
′ is an unknown p-dimensional parameter vector, the ui are known and nonrandom

in some bounded domain D ⊂ �, f (.) is an unknown smooth function, and εi ’s are
independent and identically distributed random errors with E(εi ) = 0, Var(εi ) = σ 2

and are independent of (xi , ui ).
The explanatory variables are represented separately in twoparts: the nonparametric

part ( f (ui )) and the parametric linear part (x ′
iβ). We shall call f (ui ) the smooth

part of the model and assume that it represents a smooth unparametrized functional
relationship.Theui havebounded support, say theunit interval, andhavebeen arranged
so that u1 ≤ u2 ≤ · · · ≤ un . The goal is to estimate the unknown parameter vector β

and nonparametric function f (u) from the data {yi , xi , ui }. In vector/matrix notation,
the Model (1) can be written as

y = Xβ + f + ε, (2)

where y = (y1, . . . , yn)′, X = [x1, . . . , xn]′, f = ( f (u1), . . . , f (un))′,
ε = (ε1, . . . , εn)

′.
Partially linear regression models are more flexible than the standard linear regres-

sionmodels since they combine both parametric and nonparametric components when
it is believed that the response variable y depends on variable X in a linear way but
is nonlinearly related to other independent variable U . Due to its flexibility, PLM has
been widely used in econometrics, finance, biology, sociology and so on. InModel (2),
Yatchew (1997) concentrated on estimation of the linear component and used differ-
encing to eliminate bias induced from the presence of the nonparametric component.
Yatchew’s method does not require an estimator of the function f (.) and are often
called difference-based estimation procedure, provided that f (.) is differentiable and
the u′

i s are closely spaced, it is possible to remove the effect of the function f (.) by
differencing the data appropriately (Yatchew 2003).

In regression analysis, researchers often encounter the problem of multicollinear-
ity. The least squares estimator performs poorly in the presence of multicollinearity.
Condition number is a measure of the presence of multicollinearity. If X ′X is ill condi-
tioned with a large condition number, ridge regression estimator (Hoerl and Kennard
1970) can be used to estimate β.

Applying the shrinkage estimators is well-known as an efficient method to solve
the problems caused by the multicollinearity. We assume that the condition number
of the parametric component is large indicating that a biased estimation procedure is
desirable. Its parametric part has the same structural form as the classical methods.
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Akdeniz and Tabakan (2009) introduced a ridge estimator for the vector of param-
eters in a semiparametric regression model when additional linear restrictions on the
parameter vector are assumed to hold. A difference-based ridge regression estimator
of regression parameters in the partially linear model is given in Tabakan and Akd-
eniz (2010). The difference-based estimation procedure is optimal in the sense that
the estimator of the linear component is asymptotically efficient and the estimator of
the nonparametric component is asymptotically minimax rate optimal for the partial
linear model (Wang et al. 2011).

In this paper, a generalized difference-based restricted estimator is introduced for
the vector parameter β in the partially linear model when the errors are correlated.
Under the linear stochastic constraint r = Rβ + e, a new generalized difference-
based weighted mixed almost unbiased Ridge estimator (GDWMAURE) is proposed.
The performance of this estimator over the generalized difference-based weighted
mixed estimator (GDWME), the generalized difference-based estimator (GDE), and
the generalized difference-based almost unbiasedRidge estimator (GDAURE) in terms
of the mean square error matrix (MSEM) criterion is investigated. Then, a method to
select the biasing parameter k and non-stochastic weight ω is considered.

The paper is organized as follows. In Sect. 2, themodel and difference-based estima-
tor is defined. In Sect. 3, the generalized difference-based estimator is introducedwhen
the errors are correlated. The generalized difference-based weighted mixed estimator
and generalized difference-based weighted mixed almost unbiased Ridge estimator
of β is given in Sect. 4. The efficiency properties of the generalized difference-based
weighted mixed estimator are given in Sect. 5. In Sect. 6, we propose a method to
choose k and w. Finally, in Sect. 7 the performance of the new estimator is illustrated
by a simulation study and a realdata example. Some conclusion remarks are given in
Sect. 8.

2 Difference-based estimator

In this section we use a difference-based technique to estimate the linear regression
coefficient vector β. This technique has been used to remove the nonparametric com-
ponent in semiparametric regression model by various authors (e.g. Yatchew 1997,
2003; Klipple and Eubank 2007) . Consider the following partially linear model

y = Xβ + f + ε, (3)

Yatchew (1997) suggested estimating β on the basis of the m-th order differencing
equation

m∑

j=0

d j yk− j =
⎛

⎝
m∑

j=0

d j xk− j

⎞

⎠β +
⎛

⎝
m∑

j=0

d j f (uk− j )

⎞

⎠

+
⎛

⎝
m∑

j=0

d jεk− j

⎞

⎠ k = m + 1, . . . , n (4)
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Now let d = (d0, d1, . . . , dm)′ be a (m+1)-vector, where m is the order of
differencing and d0, d1, . . . , dm are differencing weights minimize mind0,...,dm
δ = ∑m

l=1 (
∑m−l

j=0 d jdl+ j )
2 satisfying the conditions

m∑

j=0

d j = 0 and
m∑

j=0

d2j = 1. (5)

Let us define the (n − m) × n differencing matrix D to have first and last rows[
d ′, 0′

n−m−1

]
,
[
0′
n−m−1, d

′] respectively, with i-th row
[
0i , d ′, 0′

n−m−i−1

]
, i =

2, . . . , (n − m − 1), where 0r indicates a r -vector with all zero elements.

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0 d1 d2 · · · dm 0 0 · · · 0
0 d0 d1 d2 · · · dm 0 0 · · · 0
· · ·
· · ·
· · ·
0 0 0 · · · d0 d1 · · dm 0
0 0 0 · · · d0 d1 · · dm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Applying the differencing matrix to Model (3), permits direct estimation of the para-
metric effect. As a result of developments in Roozbeh et al. (2011), it is known that
the parameter vector β in (3) can be estimated with parametric efficiency. Since the
data have been ordered so that the values of the nonparametric variable(s) are close,
the application of the differencing matrix D in Model (3) removes the non-parametric
effect in large samples (Yatchew 2000). If f (.) is an unknown function that is the
inferential object and has a bounded first derivative, then Df is close to 0, so that by
applying the differencing matrix we have

Dy = DX β + Df + Dε, (6)

which is approximately equal to DXβ + Dε, or

ỹ ∼= X̃β + ε̃, (7)

where ỹ = Dy, X̃ = DX and ε̃ = Dε. So that the role of the constraints (5) is now
evident (Yatchew 2003, p. 57; Klipple and Eubank 2007). Yatchew (2003) defines
a simple differencing estimator of the parameter β in the semiparametric regression
model. Thus, standart linear models considerations suggest estimating β by

β̂diff = [
(DX)′(DX)

]−1
(DX)′(Dy). (8)

This estimator was first proposed in Yatchew (1997). Thus, differencing allows one
to perform inferences on β as if there is no nonparametric component f in the Model
(7) (see Yatchew 1997).
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Then,

S2diff = 1

n
(Dy − DX β̂diff)

′(Dy − DX β̂diff)

= 1

n
(ỹ − X̃ β̂diff)

′(ỹ − X̃ β̂diff), (9)

(see Yatchew 2003 p. 71). To account the parameter β in Eq. (7), we introduce the
modified estimator of σ 2, defined by

σ̂ 2 = ỹ′(I − P)ỹ

tr(D′(I − P)D)
, (10)

where tr(.) is the trace function for a square matrix and P is the projection matrix and
defined by Yatchew (2003)

P = X̃(X̃ ′ X̃)−1 X̃ ′.

3 Partially linear models with correlated errors

In this section we consider the following partially linear model

y = Xβ + f + ε

with E(ε) = 0, and E(εε′) = σ 2V . So, ε̃ = Dε is a (n −m)−vector of disturbances
distributed with zero mean and

E(ε̃ε̃′) = σ 2DV D′ = σ 2VD, (11)

where VD = DV D′ �= In−m is a known (n − m) × (n − m) symmetric positive
definite (p.d.) matrix and σ 2 > 0 is an unknown parameter (see Roozbeh et al. 2011).
It is well known that adopting the linear Model (7), the unbiased estimator of β is the
following generalized difference-based estimator given by

β̂GDE = (X̃ ′V−1
D X̃)−1 X̃ ′V−1

D ỹ. (12)

It is observed from Eq. (12) that the properties of the generalized difference-based
estimator of β depends on the characteristics of the informationmatrixG = X̃ ′V−1

D X̃ .
The estimate of the σ 2 is

σ̂ 2 = 1

n
(ỹ − X̃ β̂GDE)′V−1

D (ỹ − X̃ β̂GDE).

It is easy to show that

s2 = 1

n − p
(ỹ − X̃ β̂GDE)′V−1

D (ỹ − X̃ β̂GDE)
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is an unbiased estimator of σ 2. If G: p × p, p << n − m matrix is ill-conditioned
with a large condition number, then the β̂GDE produces large sample variances. More-
over, some regression coefficients may be statistically insignificant and meaningful
statistical inference becomes difficult for the researcher. We assume that the condi-
tion number of the G matrix is large indicating that a biased estimation procedure is
desirable.

4 Weighted mixed regression and estimation of parameters

The use of prior information in linear regression analysis is well known to provide
more efficient estimators of regression coefficients. The available prior information
sometimes can be expressed in the form of exact, stochastic or inequality restrictions.

We consider the Model (7):

ỹ ∼= X̃β + ε̃, ε̃ ∼
(
0, σ 2DV D′) =

(
0, σ 2VD

)
. (13)

When a set of stochastic linear constraints binding the regression coefficients in a
linear regression model is available, Theil and Goldberger (1961) have proposed the
method of mixed regression estimation. Their method typically assumes that the prior
information in the form of stochastic linear constaints and sample information in
the form of observations on the study variable and explanatory vaiables are equally
important and therefore receive equal weights in the estimation procedure.

Totally, we do not have exact prior information such as Rβ = r , involving estima-
tion of economic relations, industrial structures, production planning, etc. Therefore,
stochastic uncertainty occurs in specifying linear programming due to economic and
financial studies.

In addition to the sample Model (13), it is supposed that a set of stochastic linear
constraints binding the regression coefficients is available in the form of independent
prior information:

r = Rβ + e, e ∼
(
0, σ 2W

)
, (14)

where R is a q× p knownmatrix with rank(R) = q, e is a q×1 vector of disturbances.
W is assumed to be known and positive definite, the q × 1 vector r can be interpreted
as a random variable with expectation E(r) = Rβ. Therefore, the restriction (14)
does not hold exactly but in the mean and we assume r to be known, that is to be a
realized value of the random vector, so that all expectations are conditional on r as, for
example, E(β̂|r) (Rao et al. 2008). In order to take the information (14) into account
while constructing estimators β̂ for β, we require that E(Rβ̂|r) = r (see Toutenburg
et al. 2003).

In Model (14), we have assumed E(ee′) = σ 2W , that is, with the same factor of
proportionality σ 2 as occured in the sample model. Therefore, it may some times be
more realistic to suppose that E(ee′) = W . It is also assumed that the random vector
ε is stochastically independent of e.

When the sample information given by (13) and prior information is described by
(14) are to be assigned not necessarily equal weights on the basis of some extraneous
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considerations in the estimation of regression parameters, Schaffrin and Toutenburg
(1990) have proposed the method of weighted mixed regression estimation. Following
their technique, we obtain the generalized difference-based weighted mixed esimator
of β. In order to incorporate the restrictions (14) in the estimation of parameters, we
minimize

(ỹ − X̃β)′V−1
D (ỹ − X̃β) + ω(r − Rβ)′W−1(r − Rβ), (15)

with respect to β. This leads to the following solution for β :

β̂GDWME(ω) = β̂(ω) = (G + ωR′W−1R)−1(X̃ ′V−1
D ỹ + ωR′W−1r), (16)

where ω is a non-stochastic and non-negative scalar weight with 0 ≤ ω ≤ 1
(ω = 0 would lead to β̂GDE). It is seen that a value of ω between 0 and 1 speci-
fies an estimator in which the prior information receives less weight in comparison to
the sample information. On the other hand, a value of ω greater than 1 implies higher
weight to the prior information which, of course, may be of little practical interest.
Since

(G + ωR′W−1R)−1 = G−1 − ωG−1R′(W + ωRG−1R′)−1RG−1, (17)

we have

β̂GDWME(ω) = β̂GDE + ωG−1R′(W + ωRG−1R′)−1(r − Rβ̂GDE). (18)

If we substitute ω = 1 in (16), we get

β̂GDME = (G + R′W−1R)−1(X̃ ′V−1
D ỹ + R′W−1r), (19)

which is the generalized difference-based mixed estimator. The ordinary mixed esti-
mator is proposed by Theil and Goldberger (1961). This estimator gives equal weight
to sample and prior information.

Generalized Ridge estimator proposed by Hoerl and Kennard (1970) is defined as

β̂GDRE(k) = (X̃ ′V−1
D X̃ + k I )−1 X̃ ′V−1

D ỹ

= (G + k I )−1 X̃ ′V−1
D ỹ = G−1

k X̃ ′V−1
D ỹ

= (I + kG−1)−1β̂GDE = Tk β̂GDE, (20)

where Gk = G + k I, Tk = G−1
k G = GG−1

k .
Akdeniz and Erol (2003) discussed the almost unbiased Ridge regression estimator

(AURE), which is given as follows:

β̂ ÂU RE (k) =
(
I − k2S−2

k

)
β̂OLS, (21)
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where Sk = X ′X + k I, β̂OLS = (X ′X)−1X ′y. Similarly, we define the generalized
difference-based almost unbiased Ridge estimator (GDAURE) as follows:

β̂GDAURE(k) =
(
I − k2G−2

k

)
β̂GDE. (22)

Roozbeh and Arashi (2013) proposed the feasible Ridge estimator in partially lin-
ear model; Li and Yang (2010) proposed the stochastic mixed Ridge estimator,
Arumairajan and Wijekoon (2014) proposed stochastic restricted ordinary Ridge esti-
mator; the generalized diffrence-based ridge estimator (GDRE) defined byWu (2016).
Liu et al. (2013) introduced theweightedmixed almost unbiasedRidge estimator based
on the weighted mixed estimator. Substituting β̂GDE with β̂GDAURE(k) in β̂GDWME(ω),
we describe a generalized difference–based weighted mixed almost unbiased Ridge
estimator (GDWMAURE), as follows:
Since

(W + ωRG−1R′)−1 = W−1 − ωW−1R(G + ωR′W−1R)−1R′W−1, (23)

and

ωG−1R′(W + ωRG−1R′)−1r

= ωG−1R′ [W−1 − ωW−1R(G + ωR′G−1R)−1R′W−1
]
r

=
[
G−1 − ωG−1R′W−1R(G + ωR′W−1R)−1

]
ωR′W−1r

=
[
G−1 − G−1 { (G + ωR′W−1R) − G } (G + ωR′W−1R)−1

]
ωR′W−1r

=
[
G−1 − G−1

[
I − G(G + ωR′W−1R)−1

]]
ωR′W−1r

= (G + ωR′W−1R)−1ωR′W−1r. (24)

Using the equalities in (22) and (24), we have

β̂GDWMAURE(ω, k) = β̂AU (ω, k)

= β̂GDAURE(k)+ωG−1R′(W + ωRG−1R′)−1(r−Rβ̂GDAURE(k))

= (I − k2G−2
k )β̂GDE + ωG−1R′(W + ωRG−1R′)−1

×(r − R(I − k2G−2
k )β̂GDE)

= (G + ωR′W−1R)−1
[
(I − k2G−2

k )X̃ ′V−1
D ỹ + ωR′W−1r

]
.

(25)

In fact, from the definition of β̂GDWMAURE(ω, k) = β̂AU (ω, k), we can see that
β̂AU (ω, k) is a general estimator, which includes β̂GDE, β̂GDME, β̂GDAURE(k) and
β̂GDWME(ω) as special cases. Namely,
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if k = 0, ω = 0 then β̂AU (0, 0) = β̂GDE, (26)

if k = 0 and ω = 1 then β̂AU (ω = 1, k = 0) = β̂GDME, (27)

if ω = 0, then β̂AU (ω = 0, k) = G−1(I − k2G−2
k )X̃ ′V−1

D ỹ,

Observing that G−1 and (I − k2G−2
k ) are commutative, we have

β̂AU (ω = 0, k) = (I − k2G−2
k )G−1 X̃ ′V−1

D ỹ = (I − k2G−2
k )β̂GDE = β̂GDAURE(k),

(28)

if k = 0, then β̂AU (ω, k = 0) = (G + ωR′W−1R)−1
[
X̃ ′V−1

D ỹ + ωR′W−1r
]

= β̂GDWME(ω). (29)

5 Mean squared error matrix comparisons of estimators

In this section, we compare the underlying estimators. For the convenience of the
following discussions, we give some lemmas here.

Lemma 5.1 (Farebrother 1976) Let A be a positive definite matrix, namely A > 0,
and let α be some vector, then A − αα′ ≥ 0 if and only if α′A−1α ≤ 1.

Lemma 5.2 (Rao et al. 2008, Theorem A50, p. 504) Let n × n matrices M > 0 and
N > 0 ( or N ≥ 0), then M > N if and only if λmax(NM−1) < 1.

Lemma 5.3 (Trenkler and Toutenburg 1990) Let β̂ j = A j y, j = 1, 2 be two
competing estimators of β. Suppose that 	 = Cov(β̂1) − Cov(β̂2) > 0. Then
MSEM(β̂1)−MSEM(β̂2) ≥ 0 if and only if b′

2(	+b1b′
1)

−1b2 ≤ 1, where b j denotes
bias vector of β̂ j .

The mean squared error matrix (MSEM) of an estimator β̃ is defined as

MSEM(β̃) = E(β̃ − β)(β̃ − β)′ = Cov(β̃) + Bias(β̃)Bias(β̃)′,

where Cov(β̃) is the dispersion matrix of β̃ and Bias(β̃) = E(β̃) − β is the bias
vector of β̃. If two estimators β̃1 and β̃2 of β are given, the estimator β̃2 is said to be
superior to β̃1 with respect to the MSEM criterion, if and only if

MSEM(β̃1) − MSEM(β̃2) ≥ 0.

Now we study the efficiency properties of generalized difference-based weighted
mixed estimator, β̂GDWME(ω) and the dominance conditions for the mean squared
error matrix (MSEM) superiority of β̂GDWME(ω) and β̂AU (ω, k) over β̂GDE. It is easy
to compute that the expectation and covariance matrix of the β̂AU (ω, k) are

E(β̂AU (ω, k)) = B
[
(I − k2G−2

k )Gβ + ωR′W−1Rβ
]

= BB∗β, (30)
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and
Cov((β̂AU (ω, k)) = σ 2BB∗∗B ′, (31)

where

B =: (G + ωR′W−1R)−1, B∗ =: (I − k2G−2
k )G + ωR′W−1R,

B∗∗ =:
(
(I − k2G−2

k )G(I − k2G−2
k )′ + ω2R′W−1R

)
.

The bias of β̂AU (ω, k) is

Bias (β̂AU (ω, k)) = E(β̂AU (ω, k)) − β = −k2BG−2
k Gβ, (32)

and the mean squared error matrix of β̂AU (ω, k) is

MSEM(β̂AU (ω, k)) = Cov((β̂AU (ω, k)) + Bias(β̂AU (ω, k))Bias(β̂AU (ω, k))′

= σ 2BB∗∗B ′ + b1b
′
1, (33)

where b1 = −k2BG−2
k Gβ. So it is obvious that β̂AU (ω, k) is always biased unless

k = 0.
We can easily obtain theMSEMof the estimators β̂GDE, β̂GDME, β̂GDRE(k),β̂GDWME

(ω) as follows

MSEM(β̂GDE) = Cov(β̂GDE) = σ 2G−1, (34)

MSEM(β̂GDME) = Cov(β̂GDME) = σ 2(G + R′W−1R)−1, (35)

MSEM(β̂GDAURE(k)) = σ 2(I − k2G−2
k )G−1(I − k2G−2

k )′ + b2b
′
2, (36)

with b2 = Bias(β̂GDAURE (k)) = −k2G−2
k β. Also,

MSEM(β̂GDWME(ω)) = MSEM(β̂(ω)) = Cov(β̂(ω)) = σ 2B(G + ω2R′W−1R)B ′.
(37)

5.1 MSEM comparison between β̂(ω) and β̂AU (ω, k)

Theorem 5.1 The generalized difference-based weighted mixed almost unbiased
Ridge estimator β̂AU (ω, k) is superior to the generalized difference-based weighted
mixed estimator β̂(ω) in theMSEM sense, namelyMSEM(β̂(ω))−MSEM(β̂AU (ω, k))
≥ 0, if and only if σ−2b′

1 B̃
−1b1 ≤ 1.

Proof In order to compare β̂(ω) with β̂AU (ω, k) in the MSEM sense we consider the
difference

	1 = MSEM(β̂(ω)) − MSEM(β̂AU (ω, k))

= σ 2B(G + ω2R′W−1R)B ′
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−
[
σ 2B((I − k2G−2

k )G(I − k2G−2
k )′ + ω2R′W−1R)B ′ + b1b

′
1

]

= σ 2B(G − FkGF ′
k)B

′ − b1b
′
1 = σ 2B	B ′ − b1b

′
1, (38)

where Fk = (I − k2G−2
k ) and 	 = G − FkGF ′

k . For G = X̃ ′V−1
D X̃ > 0, there exists

some orthogonal matrix Q, such that G = Q
Q′, where 
 = diag(λ1, . . . , λp).
Therefore, we can easily compute that

G − FkGF ′
k = Qdiag(δ1, δ2, . . . , δp)Q

′,

where δi = λi (G)k2(k2+4λi (G)k+2λi (G)2)

(λi (G)+k)4
. Since k > 0 and λi (G) > 0, then δi > 0.

Observing that B =: (G + ωR′W−1R)−1 > 0, we get 	 > 0 and B̃ =: B	B ′ > 0.
By applying the Lemma 5.1, we get MSEM(β̂(ω)) − MSEM(β̂AU (ω, k)) ≥ 0 if and
only if σ−2b′

1 B̃
−1b1 ≤ 1. This completes the proof. 
�

5.2 MSEM comparison between β̂GDAURE(k) and β̂AU (ω, k)

Theorem 5.2 When λmax(NM−1) < 1, the generalized difference-based weighted
mixed almost unbiased Ridge estimator β̂AU (ω, k) is superior to the generalized
difference-based almost unbiased Ridge estimator β̂GDAURE(k) in the MSEM sense,
namely MSEM(β̂GDAURE(k)) − MSEM(β̂AU (ω, k)) ≥ 0, if and only if b′

1(σ
2	̃ +

b2b′
2)

−1b1 ≤ 1.

Proof In order to compare β̂GDAURE(k) with β̂AU (ω, k) in the MSEM sense, we sim-
ilarly consider the difference

	2 = MSEM(β̂GDAURE(k)) − MSEM(β̂AU (ω, k))

= σ 2FkG
−1F ′

k + b2b
′
2 −

[
σ 2B(FkGF ′

k + ω2R′W−1R)B ′ + b1b
′
1

]

= σ 2
[
FkG

−1F ′
k − B(FkGF ′

k + ω2R′W−1R)B ′] + b2b
′
2 − b1b

′
1

= σ 2(M − N ) + b2b
′
2 − b1b

′
1 = σ 2	̃ + b2b

′
2 − b1b

′
1. (39)

where M = FkG−1F ′
k , N = B(FGF ′ + ω2R′W−1R)B ′ and 	̃ = M − N .

It is obvious that, M = FkG−1F ′
k > 0, N = B(FkGF ′

k + ω2R′W−1R)B ′ >

0. Therefore, when λmax(NM−1) < 1, we get 	̃ > 0 by applying Lemma 5.2.
Furthermore, by Lemma 5.3, we haveMSEM(β̂GDAURE(k))−MSEM(β̂AU (ω, k)) ≥ 0
if and only if b′

1(σ
2	̃ + b2b′

2)
−1b1 ≤ 1. This assertation completes the proof. 
�

5.3 MSEM comparison between β̂GDE and β̂GDWME(ω)

Theorem 5.3 Thegeneralizeddifference-basedweightedmixed estimator β̂GDWME(ω),
is superior to the generalized difference based estimator, β̂GDE in the sense that
Cov(β̂GDE) − Cov(β̂GDWME) > 0, if and only if ( 2

ω
− 1)W + RG−1R′ > 0.
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Proof The covariance matrix of β̂GDE is

Cov(β̂GDE) = σ 2(X̃ ′V−1
D X̃)−1 = σ 2G−1. (40)

The covariance matrix of β̂GDWME is

Cov(β̂GDWME(ω)) = σ 2B(G + ω2R′W−1R)B ′, (41)

where B = (G + ωR′W−1R)−1. Since MSEM(β̂GDWME(ω)) = Cov(β̂GDWME(ω))

and MSEM(β̂GDE) = Cov(β̂GDE), we have

	3 = MESM(β̂GDE) − MSEM(β̂GDWME(ω))

= σ 2G−1 − σ 2B(G + ω2R′W−1R)B ′

= σ 2B
[
B−1G−1B ′−1 − G − ω2R′W−1R

]
B ′

= σ 2ω2BR′W−1
[
(
2

ω
− 1)W + RG−1R′

]
W−1RB ′. (42)

The difference is positive definite when B is positive definite and
[
( 2
ω

− 1)W
+RG−1R′] > 0, which is possible as long as ω < 2. ω is a nonstochastic and
non-negative scalar weight with 0 ≤ ω ≤ 1, a value ofw greater than 1 implies higher
weight to the prior information which of course, may be little practical interest. When
q < p, R′ has full column rank and it follows that in this case we can only conclude
that 	3 ≥ 0. This result completes the proof. 
�

6 Selection of biasing parameter k and non-stochastic weight ω

In this section, we give a method to choose k and ω. Firstly, a difference-based Model
(7) can be transformed to a canonical form by the orthogonal transformation. Let Q
be an orthogonal matrix such that

Q′GQ=Q′ X̃ ′V−1
D X̃ Q=Q′ X̃ ′V−1/2

D V−!/2
D X̃ Q= X̄ ′ X̄ =
=diag(λ1, λ2, . . . , λp),

where λi is the eigenvalue of G. Then we get canonical form of Model (7) as

V−1/2
D ỹ = V−1/2

D X̃β + V−1/2
D ε̃,

and
y∗ = X∗β + ε∗ = X∗QQ′β + ε∗ = X̄ β̄ + ε∗, (43)

where X̄ = X∗Q = V−1/2
D X̃ Q, β = Q′β.

Not that, MSEM( ˆ̄βAU (ω, k)) = Q′MSEM(β̂AU (ω, k))Q. It is supposed that G
and R′W−1R are commutative, then from equation (33) we see that
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MSEM( ˆ̄βAU (ω, k)) = Q′(σ 2BB∗∗B′ + b∗
1b

∗′
1 )Q

= Q′ {σ 2 (G + ωR′W−1R)−1
[
(I − k2G−2

k )G(I − k2G−2
k ) + ω2R′W−1R

]

(G + ωR′W−1R)−1Q + k4Q′BG−2
k Gββ ′GG−2

k BQ

= σ 2(
 + ω�)−1 {
[
(I − k2(
 + k I )−2
(I − k2(
 + k I )−2

]
+ ω2� } (
 + ω�)−1

+ k4(
 + ω�)−1(
 + k I )−2
β̄β̄ ′
(
 + k I )−2(
 + ω�)−1 (44)

where Q′R′W−1RQ = � = diag(ξ1, ξ2, . . . , ξp);Gk = (G + k I ); Q′G−2
k Q =

(
 + k I )−2.
Since, I − k2(
 + k I )−2 = (
 + k I )−1


[
I + k(
 + k I )−1

]
, we have

MSEM( ˆ̄βAU (ω, k))

= σ 2(
 + ω�)−1
{ [

(I + k(
 + k I )−1)(
 + kI)−1
3(
 + k I )−1(I + k(
 + kI)−1)
]

+ω2�

}
(
 + ω�)−1 + k4(
 + ω�)−1(
 + k I )−2
β̄β̄ ′
(
 + k I )−2(
 + ω�)−1

Optimal values for k and ω can be derived by minimizing

g(ω, k) = trMSEM( ˆ̄βAU (ω, k))

=
p∑

i=1

σ 2
[
λ3i (2k + λi )

2 + ω2ξi (k + λi )
4
] + k4λ2i β̄

2
i

(k + λi )4(λi + ωξi )2
(45)

First we give how to choose the value of k. It is easy to see that,

∂g(ω, k)

∂k
= 0 (46)

or
p∑

i=1

4kλ3i (β̄
2
i k

2 − 2σ 2k − σ 2λi )

(k + λi )5(λi + ωξi )2
= 0,

Thus, the optimal choice of the paramater k is

kopt = σ 2
(∑p

i=1 λ3i

) ±
√

σ 4
(∑p

i=1 λ3i

)2 + σ 2
(∑p

i=1 λ4i

)
(
∑p

i=1 β̄2
i λ

3
i )

(
∑p

i=1 β̄2
i λ

3
i )

. (47)

After the unkown parameters σ 2 and β̄2
i are replaced by their unbiased estimators, we

get the optimal estimator of k for a fixed ω value as

k̂opt = σ̂ 2
(∑p

i=1 λ3i

) +
√

σ̂ 4
(∑p

i=1 λ3i

)2 + σ̂ 2
(∑p

i=1 λ4i

)
(
∑p

i=1
ˆ̄β2
i λ

3
i )

(
∑p

i=1
ˆ̄β2
i λ

3
i )

. (48)
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Note that k̂ô pt > 0. The value ofωwhichminimizes the function g(ω, k) can be found
by differentiating with respect to ω when k is fixed:

∂g(ω, k)

∂ω
=

p∑

i=1

2
{
σ 2ωξiλi (k + λi )

4 − k4λ2i β̄
2
i ξi − σ 2λ3i ξi (2k + λi )

2
}

(k + λi )4(λi + ωξi )3
, (49)

and equating it zero. After unknown parameters σ 2 and β̄2
i are replaced by their

unbiased estimators, we get the optimal estimator of ω for a fixed k-value as

ω̂ô pt =
∑p

i=1 ê2i∑p
i=1 ê1i

, (50)

where ê1i = 2σ̂ 2ξiλi (k + λi )
4, ê2i = 2k4λ2i

ˆ̄β2

i ξi + 2σ̂ 2λ3i ξi (2k + λi )
2 .

7 Illustrative examples

In this section, we present some numerical examples to support our assertions. The
process is categorized into two setups: the first part is devoted to the Monte-Carlo
simulation studies and the second one is application of our proposed estimationmethod
to the electricity consumption dataset collected in Germany (Akdeniz Duran et al.
2012).

7.1 The Monte-Carlo simulation studies

In this section, we continue the comparison of proposed estimators based on the
scalar values of mean squared error matrix by some simulations and graphical results.
Since, theoretically, these estimators are very difficult to compare, the Monte-Carlo
simulation studies have been conducted to compare the efficiency of the estimators.
The scalar-valued mean squared error (SMSE) for any estimator β̃ is defined as

SMSE
(
β̃
) = tr

(
MSEM

(
β̃
)) = tr

(
Cov

(
β̃
)) + Bias

(
β̃
)′
Bias

(
β̃.
)

The explanatory variables were generated for n=50 with 10,000 iteration from the
following model:

yi =
6∑

j=1

xi jβ j + f (ui ) + εi , i = 1, 2, . . . , n, (51)

where

β = (−3, 1,−3, 1,−7,−4)′, f (u) = sin(u) cos(8u), u ∈ [0, 1],
X ∼ Np(μx , �x ), μx = (1, 1.5, 1.2, 3,−5, 2)′, (�x )i j = ρ|i−j|, i,j = 1, . . . , n.
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and

ε ∼ Nn(0, σ
2V ), σ = 0.15, vi j = exp {−φ|i-j|} , φ = 1, i,j = 1, . . . , n

The parametric part of Model (53), i.e. β, is estimated by a third-order differencing
coefficients, d0 = 0.8582, d1 = −0.3832, d2 = −0.2809 and d3 = −0.1942, and
then, the nonparametric part is estimated by kernel methodology and cross-validation
criteria. Optimal differencing weights do not have analytic expressions but may be
calculated easily using an optimization routine. Hall et al. (1990) presented weights
to order m = 10. These contain some minor errors. Now, we define the (n − 3) × n
differencing matrix as

D =

⎛

⎜⎜⎜⎝

d0 d1 d2 d3 0 0 . . . 0
0 d0 d1 d2 d3 0 . . . 0
...

. . .
...

0 0 . . . 0 d0 d1 d2 d3

⎞

⎟⎟⎟⎠

For the restriction, we consider the following stochastic linear restrictions

r = Rβ + e, R =

⎛

⎜⎜⎜⎜⎝

1 5 −3 −1 −1 0
−2 −1 0 −2 3 1
1 2 1 3 −2 0
4 −1 2 2 0 −2
5 3 4 −5 1 0

⎞

⎟⎟⎟⎟⎠
,

where e ∼ Nq(0, σ 2
e W ), σe = 0.15, wi j = ( 1

n

)|i−j|
, i, j = 1, . . . , q.

The Monte-Carlo simulation is performed with M=104 replications, obtaining
the estimators β̂(1) = β̂GDE, β̂(2) = β̂GDWME(ω̂opt ), β̂(3) = β̂GDME, β̂(4) = β̂GDRE(
k̂opt

)
, β̂(5) = β̂GDAURE(k̂opt ) and β̂(6) = β̂GDWMAURE

(
ω̂opt , k̂opt

)
in the restricted

semiparametric regression model.
The relative efficiencies of the above methods with respect to the first method are

estimated as

Eff(β̂(i)) =
1
M

∑M
m=1 MSE

(
β̂
(m)
(1)

)

1
M

∑M
m=1 MSE

(
β̂
(m)
(i)

) =
1
M

∑M
m=1

∥∥∥β̂(m)
(1) − β

∥∥∥
2

2

1
M

∑M
m=1

∥∥∥β̂(m)
(i) − β

∥∥∥
2

2

, i = 1, . . . , 6,

Where β̂
(m)
(i) is the estimator obtained in the mth iteration and ‖v‖22 = ∑q

i=1 v2i for
v = (v1, . . . , vq)

′.
To achieve different degrees of collinearity, four different correlations correspond-

ing to ρ = 0.50, 0.75, 0.90 and 0.95 are considered. In Fig. 1, the nonparametric
part of the Model (53) is plotted. This function is wavy and provides a good test case
for the nonparametric regression method. All computations were conducted using the
statistical package R. In Tables 1, 2, 3, 4, we computed the proposed estimators at
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Fig. 1 The nonparametric
function of Model (53)

Table 1 Evaluation of parameters for proposed estimators with ρ = 0.50

Method
coefficients

GDE GDWME GDME GDRE GDAURE GDWMAURE

β̂1 −2.99359 −2.99903 −2.99847 −2.97742 −2.98015 −2.99330

β̂2 1.00147 1.00108 1.00118 0.97107 0.97212 0.99354

β̂3 −2.99886 −3.00365 −3.00366 −2.96704 −2.96235 −3.00276

β̂4 1.47496 1.49702 1.48871 1.42677 1.42906 1.49658

β̂5 −6.97396 −6.99540 −6.97734 −6.93061 −6.93473 −6.99410

β̂6 −4.01220 −4.00484 −4.01302 −4.02218 −4.02648 −4.00512

SM̂SE
(
β̂(i)

)
0.15195 0.03590 0.03935 0.12744 0.12693 0.03175

Eff
(
β̂(i)

)
1.00000 4.23275 3.86166 1.19234 1.19708 4.78551

mŝe
(
f̂(i), f

)
1.47895 0.19898 0.20299 1.12680 1.13552 0.17652

optimum values of parameters, ω̂opt and k̂opt respectively. These optimum values of
parameters are obtained using “optim” command with “L-BFGS-B” method. We
numerically estimated the efficiencies of proposed estimators relative to GDE and

mŝe( f̂(i), f ) = 1
nM

∑M
m=1

∥∥∥ f̂ (m)
(i) − f

∥∥∥
2

2
for all proposed estimators, where f̂ (m)

(i) is

obtained in the mth iteration using kernel method as f̂ (m)
(i) = K

(
y − X β̂

(m)
(i)

)
for

i=1,…,6 and K is the smoother matrix.
The 3D diagrams as well as the 2D slices of SMSE’s versus parameters are plotted

for proposed estimators in Fig. 2. Since the results were similar across cases, to save
space we only reported the results for ρ = 0.90. As it can be seen from Fig. 2, the
2D (3D) diagrams of SMSE are convex functions (surface) and hence they have a
global minimum. This guarantees the existence of optimum values of k and ω which
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Table 2 Evaluation of parameters for proposed estimators with ρ = 0.75

Method
coefficients

GDE GDWME GDME GDRE GDAURE GDWMAURE

β̂1 −2.99739 −2.99645 −2.98574 −2.97182 −2.97601 −2.99654

β̂2 0.99784 0.99855 0.98778 0.94467 0.94702 0.99840

β̂3 −2.99821 −3.00642 −3.01130 −2.93893 −2.93115 −3.00555

β̂4 1.47989 1.49741 1.48650 1.39079 1.39500 1.49588

β̂5 −6.99142 −6.99983 −6.97494 −6.91205 −6.91769 −7.00030

β̂6 −3.99560 −3.99813 −4.00672 −4.01575 −4.02225 −3.99676

SM̂SE
(
β̂(i)

)
0.36378 0.05674 0.06279 0.29221 0.29138 0.04827

Eff
(
β̂(i)

)
1.00000 6.41134 5.79387 1.24491 1.24846 7.53623

mŝe
(
f̂(i), f

)
3.49761 0.22877 0.22149 2.45599 2.48343 0.20882

Table 3 Evaluation of parameters for proposed estimators with ρ = 0.90

Method
coefficients

GDE GDWME GDME GDRE GDAURE GDWMAURE

β̂1 −3.00300 −3.00971 −2.98434 −2.95076 −2.95806 −3.00605

β̂2 1.01266 1.00682 0.98584 0.91059 0.91705 1.00528

β̂3 −2.99023 −2.99187 −3.01306 −2.88133 −2.86998 −2.99652

β̂4 1.47482 1.50290 1.49484 1.31050 1.31988 1.50357

β̂5 −6.97500 −6.99208 −6.97794 −6.82976 −6.84086 −6.99389

β̂6 −4.02091 −4.01743 −4.00576 −4.05900 −4.06919 −4.01377

SM̂SE
(
β̂(i)

)
1.04777 0.09615 0.11547 0.81087 0.81056 0.07849

Eff
(
β̂(i)

)
1.00000 10.89775 9.07367 1.29216 1.29265 13.34882

mŝe
(
f̂(i), f

)
9.34131 0.24149 0.24444 6.62499 6.60640 0.23103

minimize the SMSE’s. Figure 3 shows the fitted function by kernel smoothing after
estimating the linear part of the model by proposed estimators for ρ = 0.90.

7.2 Application to electricity consumption data set

To motivate the problem of estimation in the partially linear model, we apply the
electricity consumption, considered by Akdeniz Duran et al. (2012). The variables are
defined for 177 items as follows:

The dependent variable y is the log monthly electricity consumption per person
(LEC) and the independent variables include log income per person (LI), log rate of
electricity price to the gas price (LREG) and cumulated average temperature index
(Temp) for the corresponding month taken as average of 20 German cities computed
from the data of German weather service.
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Table 4 Evaluation of parameters for proposed estimators with ρ = 0.95

Method
coefficients

GDE GDWME GDME GDRE GDAURE GDWMAURE

β̂1 −2.90359 −2.96549 −2.99494 −2.91271 −2.97424 −2.99398

β̂2 0.82283 0.97354 0.99851 0.83207 0.96629 0.99784

β̂3 −2.80692 −3.02548 −3.00296 −2.79289 −2.95991 −3.00217

β̂4 1.22227 1.48824 1.50039 1.23569 1.45264 1.49726

β̂5 −6.78489 −6.99168 −7.00153 −6.80125 −6.98940 −7.00219

β̂6 −4.04966 −3.97889 −4.00043 −4.06178 −3.99634 −3.99761

SM̂SE
(
β̂(i)

)
2.05247 0.14073 0.16843 1.59901 1.59891 0.10672

Eff
(
β̂(i)

)
1.00000 14.58471 12.18624 1.28359 1.28367 19.23319

mŝe
(
f̂(i), f

)
17.96314 0.25270 0.26767 12.62382 12.56059 0.24046

To detect the nonparametric part of the model, by Yatchew (2000), the test statistic
for the null hypothesis that the regression function has the parametric form i.e., H0 :
f (u) = h(u;β) for a parametric function h(.), against the nonparametric alternative
f (u), when one uses optimal differencing weights, is

Z0 = √
nm

σ̂ 2 − σ̂ 2
diff

σ̂ 2
diff

D→ N (0, 1) (52)

where σ̂ 2 = 1
n

∑n
i=1

(
yi − h(u;β̂)

)2
, σ̂ 2

diff = ỹ′(I−P)ỹ
tr(D′(I−P)D)

, P = X̃
(
X̃ ′ X̃

)−1
X̃ .

We consider Temp as a non-parametric part (using a third-order differencing coef-
ficients), because, it has the largest value of nonparametric significance test statistics
among those of other independent variables. The statistics of above test for all explana-
tory variables can be found in Table 5. We also use the added-variable plots to identify
the parametric and nonparametric components of the model. Added-variable plots
enable us to visually assess the effect of each predictor, having adjusted for the effects
of the other predictors. By looking at added-variable plot (Fig. 5), we consider Temp
as a nonparametric part and so, the specification of the partially linear model is

(LEC)i =
11∑

j=1

β j xi j + β12(LI)i + β13(LREG)i + f (Tempi ) + εi , (53)

where x1, . . . , x11 are dummy variables for the monthly effects. The ratio of largest
eigenvalue to smallest eigenvalue for new design matrix in model (55) after apply-
ing differencing method is approximately λ13/λ1 = 220.3069 and so, there exists a
potential multicollinearity between the columns of design matrix.

After a primary evaluation of model (55), one might consider the stochastic restric-
tion r ∼= R β, where
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Fig. 2 The diagram of SMSE versus parameters for ρ = 0.90. Top left SMSE
(
β̂GDME

)
and

SMSE
(
β̂GDWME

)
; Top right SMSE

(
β̂GDRE (k)

)
; Bottom left SMSE

(
β̂GDAURE (k)

)
; Bottom right

SMSE
(
β̂GDWMAURE(ω, k)

)

R =
(
0 0 0 0 0 0 0 0 0 0 0 2 3
1 1 0 1 1 1 0 0 0 0 0 0 −1

)
, r =

(−0.03
0

)
.

We test the linear hypothesis H0 : r ∼= Rβ in the framework of our partially linear
model (55). The test statistic for H0, given our observations, is

χ2
rank(R) =

(
Rβ̂diff − r

)′ (
R�̂

β̂diff
R′)−1 (

Rβ̂diff − r
)

= 0.00015,

where �̂
β̂diff

= (
1 + 1

2m

)
σ̂ 2
diff

(
X̃ ′ X̃

)−1
(see Yatchew 2000). The test statistic is not

greater than upper α-quantile of chi-square distribution.Thus we conclude that the null
hypothesis H0 is not rejected.
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Fig. 3 The Estimation of the
function under study by kernel
approach for ρ = 0.90

Table 5 The values of test
statistics (54)

Variable Z0

LI 1.99

LREG 2.06

Temp 2.95*

Table 6 shows a summary of the results. In this Table, the RSS and R2 respec-
tively are the residual sum of squares and coefficient of determination of the model,
i.e., ‖ y − ŷ ‖22, ŷ = X β̂(i) + f̂ (u) and R2 = 1−RSS/Syy, which calculated
for each proposed estimators of β. For estimation of nonparametric effect, at first
we estimated the parametric effects by one of the proposed estimators and then,
local polynomial approach was applied to fit LEC − X β̂(i) on u = T emp, where
X = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, L I, LREG) (Fig. 5).

8 Conclusions

We considered the method of weighted mixed regression estimation to estimate the
regression coefficients in generalized difference-based semiparametric partially lin-
ear model. The generalized difference-based weighted mixed almost unbiased Ridge
estimator, β̂AU (ω, k) is derived and its dominanceover both the generalizeddifference-
based weighted mixed estimator, β̂(ω) and the generalized difference-based almost
unbiased Ridge estimator, β̂GDAURE(k) is studied under the criterion of mean squared
error matrix. After some theorems, the Monte-Carlo simulation studies and a realdata
example have been conducted to compare the performance of the proposed estimators
numerically. The results from the Monte-Carlo simulations for n = 50, p = 6 and
different ρ are presented in Tables 1, 2, 3, 4 and Figs. 2 and 3. From these tables it
can be seen that the factor affecting the performance of the estimators is the degree
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Fig. 4 Added-variable plots of individual explanatory variables versus dependent variable, linear fit (red
solid line) and kernel fit (blue dashed line)

of correlation (ρ). It can be concluded that GDWMAURE is leading to be the best
estimator among others for the parametric part of the model, since it offers bigger
efficiency and smaler mse values in all proposed estimators. Further GDE is the worst
estimator for the parametric part in this examples. In general, the value of ρ has pos-
itive effect on the performance of the proposed estimators with respect to GDE. In
the real example study, a near dependency among the columns of X̃ ′ X̃ identified from
λ13/λ1 = 220.3069, that is, the design matrix may be considered as being very ill-
conditioned and we had to consider the ridge or form of proposed estimators in our
study. As it can be seen from Table 5 and Fig. 4, the nonlinear relation between log
monthly electricity consumption per person (LEC) and cumulated average tempera-
ture index (Temp) can be detected and so, the pure parametric model does not fit to the
data and semiparametric partially linear model fits more significantly. Further, from
Table 6 and Fig. 5, it can be deduced that GDWMAURE is quite efficient in the sense
that it has significant value of goodness of fit.
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Table 6 Evaluation of parameters for proposed estimators for real data set

Method
variables

GDE GDWME GDME GDRE GDAURE GDWMAURE

x1 −0.59549 −0.10495 −0.00466 −0.05732 −0.11217 −0.04961

x2 −0.16763 −0.04680 −0.02483 −0.05139 −0.07615 −0.06107

x3 −0.02016 −0.01367 −0.00788 −0.00847 −0.01168 −0.01193

x4 −0.00801 −0.00753 −0.00300 −0.00364 −0.00581 −0.00680

x5 −0.00619 −0.00286 0.00156 0.00104 −0.00086 −0.00143

x6 −0.01977 −0.01484 −0.00933 −0.00939 −0.01236 −0.01280

x7 −0.01178 −0.01346 −0.00913 −0.00784 −0.00937 −0.01059

x8 −0.02579 −0.01568 −0.00924 −0.01036 −0.01441 −0.01424

x9 −0.01444 −0.01017 −0.00558 −0.00550 −0.00826 −0.00875

x10 −0.01230 −0.01166 −0.00790 −0.00756 −0.01053 −0.01153

x11 −0.00878 −0.00112 0.00409 0.00240 −0.00011 −0.00015

LI −0.00006 0.00534 0.01005 0.00778 0.00601 0.00571

LREG −0.00631 −0.00279 0.00177 0.00164 0.00019 −0.00032

RSS 0.39933 0.36051 0.35987 0.35463 0.35216 0.35061

R2 0.57175 0.61338 0.61406 0.61969 0.62233 0.62400

Fig. 5 The Estimations of
nonparametric part of model
(55)
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